

GUIDANCE MATERIAL

FOR

Electronic Flight Bags (EFBs)

Approved by

Revision 2, 8 September 2017

This document is property of The Civil Aviation Authority of Thailand. All right reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior permission for The Civil Aviation Authority of Thailand.

TABLE OF CONTENES

List of Effective Pages	A/2
Records of Revision	A/3
Revision Highlights	A/4
Chapter 1 Introduction	1
Chapter 2 Definitions and Abbreviation	2-4
Chapter 3 Equipment/Hardware Considerations	5-8
Chapter 4 Human Factors	14
Chapter 5 Crew Operating Procedures	15-16
Chapter 6 Flight Crew Training	17
Chapter 7 EFB Risk Assessment	18-19
Chapter 8 EFB Functions	20-25
Chapter 9 Operational Evaluation Process	
Chapter 10 Crew Operating Procedures	30-32
Chapter 11 EFB Use in General Aviation Operations	33-34
Appendix A – Guidance for EFB Software Applications	
Appendix B – Specific Operational Approval Checklist	53-65
Appendix C – Example of Operations Specifications and Operations Manual Content	66-67
Appendix D – EFB Policy and Procedures Manual	68-69
Attachment 1 – Example of A Letter of Approval	70

Electronic Flight Bags (EFBs)

LIST OF EFFECTIVE PAGES

Title	Page	Rev.	Date
Table of Contents	A/1	No.2	8 September 2017
List of Effective Pages	A/2	No.2	8 September 2017
Records of Revision	A/3	No.2	8 September 2017
Revision Highlights	A/4	No.2	8 September 2017
Chapter 1	1	No.2	8 September 2017
Chapter 2	2-4	No.2	8 September 2017
Chapter 3	5-13	No.2	8 September 2017
Chapter 4	14	No.2	8 September 2017
Chapter 5	15-16	No.2	8 September 2017
Chapter 6	17	No.2	8 September 2017
Chapter 7	18-19	No.2	8 September 2017
Chapter 8	20-25	No.2	8 September 2017
Chapter 9	26-29	No.2	8 September 2017
Chapter 10	30-32	No.2	8 September 2017
Chapter 11	33-34	No.2	8 September 2017
Appendix A	35-52	No.2	8 September 2017
Appendix B	53-65	No.2	8 September 2017
Appendix C	66-67	No.2	8 September 2017
Appendix D	68-69	No.2	8 September 2017
Attachment 1	70	No.2	8 September 2017

RECORDS OF REVISION

Revision No.	Issue Date	Date Inserted	Inserted by
Original	31 August 2016	31 August 2016	DCA
1	19 September 2016	19 September 2016	CAAT (OPS)
2	8 September 2017	8 September 2017	CAAT (OPS)

REVISION HIGHLIGHTS

Chapter/Section	Description of Change
All	New issue
All	Change name from DCA to CAAT

Revision: Date: No. 2

te:

8 September 2017

CHAPTER 1 INTRODUCTION

1. PURPOSE

- 1.1 This Guidance Material (GM) contains the standards, policies, procedures and guidelines concerning the Thai Air Operator Requirement (AOCR) and is published for use by The Civil Aviation Authority of Thailand (CAAT) personnel delegated with the responsibility of certifying Air Operators shall comply with all provisions in this GM during the certification process. In addition, this GM contains instruction in respect of certification to be eligible to conduct by Air Operators for guidance to reach the CAAT requirement.
- 1.2 This GM provides guidance to the operator applying for operational approval for Electronic Flight Bag (EFB) operations.

2. SCOPE

- 2.1 Traditional all documentation and information available to flight crew for use on the flight deck has been in paper format. Much of this information is now available in electronic format and the purpose of this leaflet is to give guidance to operators on gaining approval form CAAT for use of electronically processed information.
- 2.2 It is not intended to impose additional requirements in respect to basic information and data sources. The Operator remains responsible for ensuring the accuracy of the information used and that it is derived from verifiable sources. The approval of EFBs is intended to cover the different methods of storing, retrieving and use of this information.
- 2.3 This guidance material is designed to cover airworthiness and operational criteria for the approval of Electronic Flight Bags (EFBs).
- 2.4 Amendments to this GM will be notified through Email. flightops@caat.or.th

Electronic Flight Bags (EFBs)

CHAPTER 2 DEFINITIONS AND ABBREVIATION

DEFINITIONS

ACARS - Aircraft Communications Addressing and Reporting System.

Aircraft interface device (**AID**). A device or function that provides an interface between the EFBs and other aircraft systems which protects the aircraft systems and related functions from the undesired effects from non-certified equipment and related functions.

Critical phases of flight - as defined by the state of the operator, e.g. takeoff, approach and landing

Operator - A person, organization or enterprise engaged in or offering to engage in an aircraft operation.

Electronic flight bag (**EFB**). An electronic information system, comprised of equipment and applications for flight crew, which allows for the storing, updating, displaying and processing of EFB functions to support flight operations or duties.

EFB software application. Software function hosted on an EFB platform.

EFB management - Contains all procedures related to the operator's EFB management as listed in the section "EFB management".

Installed resources - Hardware/software installed in accordance with airworthiness requirements

Independent EFB platforms - Multiple EFBs that are designed in such a way that no single failure makes all of them unavailable

Portable electronic device (**PED**). Typically, lightweight consumer electronic device which is functionally capable for communications, data processing and/or utility.

Electronic	Fliaht	Bags	(EFBS)
		Dago	

8 September 2017

Standard operating procedure (**SOP**). Flight crew operating procedures as described in the flight operations manuals.

Transmitting PED. A PED containing one or more devices intentionally emitting radio frequencies (WIFI, GSM, Bluetooth, etc.).

ABBREVIATIONS

- AFM Aircraft flight manual
- AID Aircraft interface device
- AMMD Airport moving map display
- AODB Airport, runway, obstacles database
- CAAT The Civil aviation authority of Thailand
- CDL Configuration deviation list
- CPU Central processing unit
- EMI/EMC Electromagnetic interference/electromagnetic compatibility
- FCOM Flight crew operating manual
- GNSS Global navigation satellite system
- GUI Graphical user interface
- HMI Human-machine interface
- MAC-Mean aerodynamic chord
- M&B Mass and balance

Electronic Flight Bags (EFBs)	Revision:	No. 2
Electronic Flight Days (El DS)	Date:	8 September 2017

- MEL Minimum equipment list
- OS Operating software
- PED Portable electronic device
- SCAP Standard computerized aircraft performance
- SOP Standard operating procedure
- STC Supplemental type certificate
- TACS Taxi aid camera system
- TC Type certificate
- T/O Take-off
- TOM Take-off mass
- T-PED Transmitting PED
- ZFM Zero fuel mass

No. 2

CHAPTER 3

EQUIPMENT / HARDWARE CONSIDERATIONS

Electronic Flight Bags (EFB) is defined as:

An electronic information system for flight crew which allows for storing, updating, delivering, displaying and/or computing digital data to support flight operations or duties.

This Manual contains guidance on the operational evaluation of EFBs and commonly used software applications for granting an operational approval where appropriate. It can also be used as a source of information by operators planning EFB operations. It should be noted that the following features are not considered as EFB functions and, unless airworthiness approved, should not be hosted on an EFB:

- a) Displaying information which may be tactically used by the flight-crew members to check or control the aircraft position or trajectory,
- b) Displaying information which may be directly used by the flight crew to assess the real-time status of aircraft critical and essential systems,
- c) Communicating with air traffic services,
- d) Sending data to certified aircraft systems other than those certified for that intent.

3.1 Types of EFB

- a) EFBs can be either portable or installed.
- b) **Portable EFBs** are not part of the aircraft configurations and are considered as PEDs. They generally have self-contained power and may rely on data connectivity to achieve full functionality. Modifications to the aircraft to use portable EFBs require the appropriate airworthiness CAAT approval in accordance with AOCR Chapter 8.

8 September 2017

- c) **Installed EFBs** are integrated into the aircraft, subject to normal airworthiness requirements and under design control. The approval of these EFBs is included in the aircraft's type certificate (TC) or in a supplemental type certificate (STC).
- 3.2 Hardware Considerations for Installed Resources and Mounting Devices.

Installed resources should be certified either during the certification of the aircraft, through service bulletin by the original equipment manufacturer or through a third party STC.

3.2.1 Mounting Devices

If the mounting is permanently attached to aircraft structure, the installation will be approved in accordance with the appropriate airworthiness regulations. The following guidance may be considered for that purpose:

- a) The mounting method for the EFB should allow easy access to the EFB controls and a clear unobstructed view of the EFB display. It should be located such that the effects of glare and/or reflections are minimized. This may be accomplished by providing some adjustment for the flight crew to compensate for glare and reflections;
- b) It should be confirmed that the mounted EFB does not obstruct visual or physical access to aircraft displays or controls or external vision and the location does not impede crew ingress, egress and emergency egress path; and
- c) there should be no mechanical interference between the EFB in its mounting device and any of the flight controls in terms of full movement, under all operating conditions and no interference with buckles, oxygen hoses, etc.
- 3.2.2 Data connectivity

- 3.2.2.1 The capability of connecting the EFB to certified aircraft systems have to be covered by an airworthiness approval.
- 3.2.2.2 Certified aircraft systems should be protected from adverse effects of EFB system failures by using a certified Aircraft Interface Device (AID). An AID may be implemented as a dedicated device, e.g. as defined in ARINC 759, or it may be implemented in non-dedicated devices, such as an EFB docking station, a network file server or other avionics equipment.

3.2.3 Power to the EFB

Installed power provisions should comply with the applicable airworthiness regulations (e.g. FAR 25, CS 25). Connection of the EFB to a nonessential, or to the least critical power bus, is recommended, so failure or malfunction of the EFB, or power supply, will not affect safe operation of aircraft critical or essential systems.

3.2.4 Stowage

When an EFB is stowed, the device and its securing mechanism should not intrude into the flight deck space to the extent that they cause either visual or physical obstruction of flight controls/displays and/or egress routes.

Hardware Considerations for Portable EFBs 3.3

Portable EFBs can be used as either handheld equipment or mounted in a fixed or moveable mount attached to the aircraft structure or temporarily secured (e.g. kneeboard, suction cup, etc.).

3.3.1 **Physical Characteristics**

The size and practicality of the EFB should be considered as the device may be cumbersome for normal use on a flight deck.

Electronic Flight Bags (EFBs)	Revision:
Liectionic i light bags (Li bs)	Date:

8 September 2017

No. 2

3.3.2 **Readability**

The EFB data should be legible under the full range of lighting conditions expected on the flight deck, including direct sunlight.

3.3.3 Environmental

The EFB has to be operable within the foreseeable cockpit operating conditions including foreseeable high/low temperatures, and after rapid depressurization if the EFB is intended for use in such an event.

3.4 Basic non-interference testing

- 3.4.1 EFB devices intended to be used in all phases of flight should demonstrate that they meet environmental standards for radiated emissions for equipment operating in an airborne environment. Installed EFBs will be required to demonstrate non-interference with other aircraft systems as part of their certification process. As previously noted, portable EFBs are considered to be PEDs. As such, any reference to PEDs in this suction is also applicable to portable EFBs.
- 3.4.2 In order to operate a portable EFB during flight, the user/operator is responsible for ensuring that the EFB will not interfere in any way with the operation of aircraft equipment. The following methods are means to test portable EFBs that are to remain powered (including being in standby mode) throughout the flight, in order to ensure that they will not electromagnetically interfere with the operation of aircraft equipment.
- 3.4.3 Method 1
 - <u>Step 1</u> is an electromagnetic interference (EMI) test using RTCA/DO-160, Section 21, Category M. An EFB vendor or another source can conduct this test for an EFB user/operator. An evaluation of the results of the RTCA/DO-160 EMI test can be used to determine if

Electronic Flight Bags (EFBs)	Revision:	No. 2
Lieutoniu i light days (Li DS)	Date [.]	8 September 2017

an adequate margin exists between the EMI emitted by the EFB and the interference susceptibility threshold of aircraft equipment. If this step determines that adequate margins exist for all interference, then the test is complete. However, if this step identifies inadequate margins for interference, then step 2 testing must be conducted.

<u>Step 2</u> testing is a complete test in each aircraft using standard industry practices. This should be done to the extent normally considered acceptable for non-interference testing of a portable EFB in an aircraft for all phases of flight. Credit may be given to other aircraft of the same make and model equipped with the same avionics as the one tested.

It should be acceptable for operators/users to bypass Step 1 and go directly to Step 2 in order to determine non-interference of the EFB/PED.

3.4.4 Method 2

As an alternative, Step 2 of Method 1 can be used directly in order to determine non-interference of the EFB.

3.5 Additional testing for transmitting portable EFBs

- 3.5.1 In order to activate the transmitting functions of a portable EFB during flight in conditions other than those that may be already certified at aircraft level (e.g. tolerance to specific transmitting PED models) and hence documented in the aircraft flight manual or equivalent, the user/operator must ensure that the device will not interfere with the operation of the aircraft equipment in any way. The following is a method to test transmitting portable EFBs that are to remain powered (including being in standby mode) during flight.
- 3.5.2 This test consists of two separate test requirements:
 - a) **Test Requirement 1**. Each model of the device should have an assessment of potential electromagnetic interferences (EMI) based

Electronic Flight Bags (EFBs)	Revision:	No. 2
Liectionic Thynt Days (LTDS)	Date:	8 September 2017

on a representative sample of its frequency and power output. This EMI assessment should follow a protocol such as the applicable processes set forth in RTCA/ DO- 294, *Guidance on Allowing Transmitting Portable Electronic Devices (T-PEDs) on Aircraft.* This frequency assessment must confirm that no interference of aircraft equipment will occur as a result of intentional transmissions from these devices.

Test Requirement 2. Once an EMI assessment has determined that there will be no interference from the EFB's intentional transmissions (Test Requirement 1), and basic non-interference testing has been conducted with the device not deliberately transmitting (see Chapter 3, 3.4), non-interference testing should be conducted with the transmit function being operative. The position of the transmitting device is critical to non-interference testing; hence, locations of the EFB and of the transmitter (if applicable) should be clearly defined and adhered to.

3.6 Power supply, connection and source

- 3.6.1 The operator should ensure that power to the EFB, either by battery and/or externally supplied power, is available to the extent required for the intended operation.
- 3.6.2 The power source needs to be suitable for the device. The power source may be a dedicated power source or a general-purpose source already fitted.
- 3.6.3 Means to turn off the power source, other than a circuit breaker, should be reachable by the pilot when strapped in the normal seated position (e.g. access to unplug the EFB or a separate hardware or software switch clearly labelled for the power source, etc.).

3.7 Batteries

- 3.7.1 The operator should ensure that the batteries are compliant with the applicable Standards for use in an aircraft.
- 3.7.2 The operator should consider introducing procedures to handle thermal runaways or similar battery malfunctions potentially caused by EFB batteries (e.g.lithium-based batteries). At least the following issues should be addressed:
 - a) risk of leakage;
 - b) safe storage of spares including the potential for short circuit; and
 - c) hazards due to on-board continuous charging of the device, including battery overheat.

3.8 Cabling

The operator needs to ensure that any cabling attached to the EFB, whether in the dedicated mounting or when handheld, does not present an operational or safety hazard.

3.9 Temperature rise

Operating the proposed EFB device may generate heat. The placement of the EFB should allow sufficient airflow around the unit, if required.

3.10 Data connectivity between EFBs

If two or more EFBs on the flight deck are connected to each other, then the operator should demonstrate that this connection does not negatively affect otherwise independent EFB platforms.

3.11 Data connectivity to aircraft systems

EFB data connectivity should be validated and verified to ensure non-interference and isolation from certified aircraft systems during data transmission and reception.

Electronic Flight Bags (EFBs)

Revision: No. 2 Date: 8 Septen

8 September 2017

3.12 External connectivity

Some EFBs may have the provision for external ports other than power or data connectivity with aircraft systems (e.g. an antenna or a data connection to the operator ground network). External connectivity leading to a change to the aircraft type design should require an airworthiness approval. The extent of this information is dependent on the complexity of the interface to the aircraft systems.

3.13 Stowage

All hand-held EFBs need to be stowed during critical phases of flight to ensure the safety of the occupants of the flight deck. Stowage needs to be configured such that the EFB can be easily stowed securely but remain readily accessible in flight. The method of stowage should not cause any hazard during aircraft operations.

Viewable stowage

A portable EFB not mounted in a mounting device may be used during all phases of flight provided that it is secured on the flight crew (e.g. kneeboard) or into an existing aircraft part (e.g. suction cups) with the intended function to hold acceptable light mass portable devices viewable to the pilot at her/his required duty station. This viewable stowage device is not necessarily part of the certified aircraft configuration. Its location should be documented in the EFB policy and procedures manual.

Some types of viewable stowage securing means may have characteristics that degrade appreciably with aging or due to various environmental factors. In that case, it should be ensured that the stowage characteristics remain within acceptable limits for the proposed operations. Securing means based on vacuum (e.g. suction cups) have a holding capacity that decreases with pressure. It should be demonstrated that they will still perform their intended function at operating cabin altitudes. In addition, it should be demonstrated that if the EFB moves or is separated from its stowage, or if the viewable stowage is unsecured from the aircraft (as a result of turbulence, manoeuvring, or other action), it will not interfere with flight controls, damage flight deck equipment, or injure flight crew members.

CHAPTER 4 HUMAN FACTORS

The operator should carry out an assessment of the human-machine interface and aspects governing crew coordination when using the EFB. Whenever possible, the EFB user interface philosophy should be consistent (but not necessarily identical) with the flight deck design philosophy. The review of the complete system should include, but is not limited to:

- a) general considerations including workload, usability, integration of the EFB into the flight deck, display and lighting issues, system shutdown, and system failures;
- b) physical placement issues, including stowage area, use of unsecured EFBs, design and placement of mounting devices;
- c) considerations for interference with anthropometric constraints, cockpit ventilation, and speaker sound;
- d) training and procedures considerations, including training on using EFB applications, the EFB policy and procedures manual, fidelity of the EFB training devices, and mechanisms for gathering user feedback on EFB use;
- e) hardware considerations refer to Chapter 3, item 3.2; and
- f) software considerations refer to Chapter 8, Item 8.2.

CHAPTER 5 CREW OPERATING PROCEDURES

5.1 General

- 5.1.1 The operator should have procedures for using the EFB in conjunction with the other flight deck equipment.
- 5.1.2 If an EFB generates information similar to that generated by existing flight deck systems, procedures should clearly identify:
 - a) which information source will be primary;
 - b) which source will be used as secondary information;
 - c) under what conditions to use the secondary source; and
 - d) what actions to take when information provided by an EFB does not agree with that from other flight deck sources, or, if more than one EFB is used, when one EFB disagrees with another.
- 5.1.3 If normal operational procedures require an EFB for each flight deck crew member, the set-up should comply with the definition of independent EFB platforms.
- 5.1.4 Operators should include the requirements for EFB availability in the operations manual and/or as part of the minimum equipment list.

5.2 Revisions and Updates

5.2.1 The operator should have a procedure in place to allow flight crews to confirm the revision number and/or date of EFB application software including, where applicable, database versions (e.g. update to the latest aeronautical charts).

5.2.2 Flight crews should not, however, have to confirm the revision dates for databases that would not, in case of outdated data, adversely affect flight operations. Procedures should specify what actions to take if the software applications or databases loaded on the EFB are out of date.

5.3 Workload and Crew Coordination

- 5.3.1 In general, using an EFB should not increase the crew's workload during critical phases of flight. For other flight phases, crew operating procedures should be designed to mitigate and/or control additional workload created by using an EFB.
- 5.3.2 Workload should be distributed between flight crew members to ensure ease of use and continued monitoring of other flight crew functions and aircraft equipment. The procedures should include specification of the phases of flight at which the flight crew may not use the EFB, if applicable.

5.4 Reporting

A reporting system for EFB failures should be established. Procedures should be in place to inform maintenance and flight crews about a fault or failure of the EFB, including actions to isolate it until corrective action is taken.

Electronic Flight Bags (EFBs)

No. 2

CHAPTER 6

FLIGHT CREW TRAINING

The use of the EFB should be conditional on appropriate training. Training should be in accordance with the operator's SOP (including abnormal procedures) and should include:

- a) an overview of the system architecture;
- b) pre-flight checks of the system;
- c) limitations of the system;
- d) the use of each operational software application;
- e) restrictions on the use of the system, including when some or all of the EFB functions are not available;
- f) the conditions (including phases of flight) under which the EFB may not be used;
- g) procedures for cross-checking data entry and computed information;
- h) human performance considerations on the use of the EFB;
- i) additional training for new applications, new features of current applications, or changes to the hardware configuration;
- j) recurrent training and proficiency checks; and
- k) any area of special emphasis raised during the EFB evaluation with CAAT.

CHAPTER 7

EFB RISK ASSESSMENT

7.1 General

- 7.1.1 The EFB risk assessment is a process that should be performed to assess the risks associated with the use of each EFB function and should allow the operator to keep the risks to an acceptable level by defining the appropriate mitigation means.
- 7.1.2 This risk assessment should be performed before the beginning of the approval process (if applicable) and its results should be reviewed on a periodic basis.
- 7.1.3 The guidance on safety risk assessment is contained in the ICAO *Safety Management Manual (SMM)* (Doc 9859).

7.2 EFB Failures and Mitigation Means

- 7.2.1 Based on the outcome of the EFB risk assessment, the operator should determine the need for software architectural features, personnel, procedures, and/or equipment that will eliminate, reduce, or control risks associated with an identified failure in a system.
- 7.2.2 Mitigation against EFB failure or impairment may be accomplished by one or a combination of:
 - a) system design;
 - b) separate and backup power sources for the EFB;
 - c) electronic fullback solutions to the last known, stable configuration (e.g. before an update);

d)

Electronic Flight Bags (EFBs)

- redundant EFB applications hosted on independent EFB platforms;
- e) paper products carried by selected crew members;
- f) complete set of sealed paper backups in the flight deck; and/or
- g) procedural means.

No. 2

CHAPTER 8

EFB FUNCTIONS

8.1 General

- 8.1.1 ICAO Annex 6 Operation of Aircraft, Part I International Commercial Air Transport — Aeroplanes and Part III — International Operations — Helicopters, Section II require that the State of the Operator specifically approve the operational use of EFB functions to be used for the safe operation of aircraft.
- 8.1.2 Annex 6, Part II International General Aviation Aeroplanes and Annex 6, Part III, Section III require that the State of Registry (Kingdom of Thailand) establish criteria for the operational use of EFB functions to be used for the safe operation of aircraft.
- 8.1.3 EFB functions to be used for the safe operation of aircraft are considered to be those whose failure, malfunction or misuse would have an adverse effect on the safety of flight operations (e.g. increase in flight crew workload during critical phases of flight, reduction in functional capabilities or safety margins, etc.).
- 8.1.4 Those functions should be recorded in the operations manual and linked to the operations specifications as shown in Appendix C (for commercial air transport), (see 9.6).
- 8.1.5 The applications below may be considered examples of such functions, depending on their use, associated procedures, and failure mitigation means:
 - a) a document browser displaying information required to be carried by CAAT regulations (subject to CAAT approval, where required);
 - b) electronic aeronautical chart applications;

Electronic Flight Bags (EFBs)

- airport moving map display (AMMD) applications, not used as a primary means of navigation on the ground and used in conjunction with other materials and procedures;
- d) cabin-mounted video and aircraft exterior surveillance camera displays;
- e) an aircraft performance calculation application to provide take-off, en-route, approach, landing and missed approach performance calculations; and
- f) a mass and balance calculation application.

These functions require special attention during their evaluation, as described in Appendix A.

- 8.1.6 On the contrary, the following features are not EFB functions and, unless certified as avionics functions, should not be hosted on an EFB:
 - a) displaying information which may be tactically used by the flight crew members to check, control, or deduce the aircraft position or trajectory, either to follow the intended navigation route or to avoid adverse weather, obstacles or other traffic, in flight or on ground (except AMMD as described above);
 - b) displaying information which may be directly used by the flight crew to assess the real- time status of aircraft critical and essential systems, as a replacement for existing installed avionics, and/or to manage aircraft critical and essential systems following failure;
 - c) communicating with air traffic control;
 - d) sending data to the certified aircraft systems other than the EFB installed/shared resources; and
 - e) if CAAT determines that the function requires airworthiness certification.

8.2 Considerations for all EFB Functions

8.2.1 Software HMI

- 8.2.1.1 The EFB system should provide an intuitive, and in general, consistent user interface within and across the various hosted EFB applications. This should include, but not be limited to, data entry methods, colour-coding philosophies, and symbiology.
- 8.2.1.2 Software considerations, including ease of access to common functions, consistency of symbols, terms and abbreviations, legibility of text, system responsiveness, methods of interaction, use of colour, display of system status, error messages, management of multiple applications, off- screen text/ content and use of active regions should be addressed.
- 8.2.1.3 **Use of colours and messages**. The colour "red" should be used only to indicate a warning level condition. "Amber" should be used to indicate a caution level condition. Any other colour may be used for items other than warnings or cautions, providing that the colours used differ sufficiently from the colours prescribed to avoid possible confusion. EFB messages and reminders should be integrated with (or compatible with) presentation of other flight deck system alerts. EFB aural messages should be inhibited during critical phases of flight. If, however, there is a regulatory requirement that is in conflict with the recommendation above, those should have precedence.
- 8.2.1.4 **System error messages.** If an application is fully or partially disabled, or is not visible or accessible to the user, it may be desirable to have an indication of its status available to the user upon request. It may be desirable to prioritize these EFB status and fault messages.
- 8.2.1.5 **Data entry and error messages.** If user-entered data are not of the correct format or type needed by the application, the EFB

should not accept the data. An error message should be provided that communicates which entry is suspect and specifies what type of data are expected.

- 8.2.1.6 **Responsiveness of application**. The system should provide feedback to the user when user input is accepted. If the system is busy with internal tasks that preclude immediate processing of user input (e.g. calculations, self-test, or data refresh), the EFB should display a "system busy" indicator (e.g. clock icon) to inform the user that the system is occupied and cannot process inputs immediately. The timeliness of system response to user input should be consistent with an application's intended function.
- 8.2.1.7 **Off- screen text and content** If the document segment is not visible in its entirety in the available display area, such as during "zoom" or "pan" operations, the existence of off-screen content should be clearly indicated in a consistent way. For some intended functions, it may be unacceptable if off-screen content is not indicated. This should be evaluated based on the application and intended operational function.

8.2.2 Electronic signatures

- 8.2.2.1 In some cases CAAT regulations may require a signature to signify acceptance or to confirm the authority.
- 8.2.2.2 In order to be accepted as an equivalent to a handwritten signature, electronic signatures used in EFB applications need, as a minimum, to fulfil the same objectives and should, as a minimum, assure the same degree of security as the handwritten or any other form of signature it intends to replace.

Electronic Flight Bags (EFBs)	Revisi
LIEUTIONIU I NYNT Days (LI DS)	Data

Note— Guidance on electronic signatures is contained in the ICAO Safety Management Manual (SMM) (Doc 9859)

8.3 Considerations for EFB Functions to be used for the Safe Operation of Aircraft

8.3.1 EFB Management

- 8.3.1.1 The operator should have an EFB management system in place. Complex EFB systems may require more than one individual to support the EFB management system. However, at least one person (e.g. dedicated EFB manager, OPS director, etc.) should possess an overview of the complete EFB system, including the distribution of responsibilities within the operator's management structure.
- 8.3.1.2 EFB management is the key link between the operator and the EFB system and software suppliers.
- 8.3.1.3 EFB management is responsible for hardware and software configuration management, and for ensuring, in particular, that no unauthorized software is installed. EFB management is also responsible for ensuring that only a valid version of the application software and current data packages are installed on the EFB system. For some software applications, there should be a means for operators to carry out their own check of data content prior to load and/or release for operational use.
- 8.3.1.4 The EFB management system should ensure that software applications supporting function(s) not directly related to operations conducted by the flight crew on the aircraft (e.g. web browser, email client, picture management, etc.) do not adversely impact the operation of the EFB.
- 8.3.1.5 Each person involved in EFB management should receive appropriate training in their role and should have a good working knowledge

Electronic Flight Bags (EFBs)	Revision:	No. 2
Lieutonic i light bays (Li bs)	Date:	8 September 2017

of the proposed system hardware, operating system and relevant software applications as well as knowledge about flight operations.

- 8.3.1.6 EFB management should establish procedures to ensure that no unauthorized changes take place to EFB functions. An EFB policy and procedures manual may be part of the operator's operations manual (see Appendix D).
- 8.3.1.7 Procedures should be established for the maintenance of the EFB.
- 8.3.1.8 EFB management should be responsible for the procedures and systems, documented in the EFB policy and procedures manual, that maintain EFB security and integrity. The required level of EFB security depends on the criticality of the used functions.

No. 2

CHAPTER 9

OPERATIONAL EVALUATION PROCESS

The operational evaluation process is designed to lead to specific operational approval, where such is required, and consists of the following courses of actions. Elements of this process are to be understood as guidelines for CAAT and operators and may also be used in instances where specific approval is not required.

Note.— This process is applicable to commercial air transport only.

9.1 Definition of the Scope

9.1.1 The scope of the operational evaluation plan will depend upon the applicant's experience with EFBs.

Considerations should include whether the operator has:

- a) no EFB experience, thus requiring a "new application and approval process"; or
- b) initiated the process of establishing an EFB programme; or
- c) an existing approved EFB programme established.
- 9.1.2 An operator implementing EFB functions may choose to start a paperless flight deck operation without paper backup or a combination of solutions with limited on-board paper backup. The operator may also choose to keep the paper backup as a cross-check against the EFB information and as a means of mitigation against failure, when transitioning from paper to electronic format.

9.2 Initial Discussion with CAAT (Phase 1)

During this phase, CAAT and the operator reach a common understanding of what needs to be evaluated, the role of CAAT, the applicable requirements, whether

Electronic	Fliaht	Baas	(EFBs)
	· ·· ·· ·· ·· ··		

8 September 2017

trials should take place and when, how they must be conducted and documented, and what documents and actions the operator is responsible for during each phase of the approval process.

Application (Phase 2) 9.3

Phase 2 begins when the operator submits a formal compliance plan to CAAT for evaluation. The plan is reviewed for completeness and compliance to the regulations and CAAT may coordinate with other inspectors and regulatory offices as necessary.

Once CAAT is satisfied with the submitted plan, the operator follows that plan to produce a complete EFB programme. The operator must clarify the intent of the operation (with or without paper backup or a combination of paperless and paper).

The applicant will typically submit information in the application package, such as:

- EFB operational suitability report (if applicable); a)
- b) EFB hardware and application specifications;
- EFB operator procedures/manual revisions; C)
- EFB training programme; and d)
- EFB evaluation report; e)
- f) EFB risk assessment.

9.4 CAAT Review (Phase 3)

- 9.4.1 CAAT will use a checklist to conduct a review of the application submitted by an operator.
- 9.4.2 Where an operator seeks to start operations with a new EFB system, CAAT should participate in the simulator evaluation or flight evaluation of an EFB. Additional simulator or flight evaluations are not required for adding a new EFB

Electronic Flight Bags (EFBs)

to an existing approval unless there is a substantial change in EFB-intended functions. When a new aircraft is added to an existing EFB approval, the suitability of the EFB for that aircraft must be addressed. CAAT should examine the technical content and quality of the proposed EFB programme and other supporting documents and procedures.

9.5 Operational Evaluation (Phase 4)

- 9.5.1 The operator should conduct an operational evaluation that verifies whether the above elements have been satisfied. The operator should notify CAAT of its intention to conduct an operational evaluation by sending a plan and keep a receipt of this notification in the aircraft during the test period.
- 9.5.2 During this validation phase, operators transitioning from paper to EFB should maintain paper backup for all electronic information. The validation phase begins when the operator formally begins use of the EFB combined with paper backup for an established period of time. Appendix B of ICAO Doc 10020 may be used for data collection during the validation phase.
- 9.5.3 Operators starting EFB operations without paper backup should have adequate mitigations means in place to access the information in case of EFB failures.
- 9.5.4 Final considerations by the CAAT:
 - a) Unacceptable validation results. If CAAT finds the proposed EFB reliability and/or function to be unacceptable, CAAT should contact the operator for corrective action. EFB deficiencies should be corrected and the EFB function revalidated prior to approval being issued.
 - b) Acceptable validation results. If CAAT finds the proposed EFB reliability and/or function to be acceptable based on validation data, then the specific approval may be issued.

9.6 Issuance of EFB Operations Specifications and Approval (Phase 5)

CAAT who will grant a specific EFB approval to the operator should update the operations specifications with an EFB entry. The operations specifications will reference the location in the operations manual where more details of the approved EFB applications can be found (see Appendix C).

Electronic	Fliaht	Bags	(EFBs)
	i iigiit	Dugo	

CHAPTER 10

CREW OPERATING PROCEDURES

10.1 General

The operator should have in place procedures for using the EFB in conjunction with the other flight deck equipment.

If an EFB generates information similar to that generated by existing flight deck systems, procedures should clearly identify:

- 1) which information source will be primary;
- 2) which source will be used for back up information;
- 3) under what conditions to use the back-up source; and
- 4) what actions to take when information provided by an EFB does not agree with that from other flight deck sources, or, if more than one EFB is used, when one EFB disagrees with another.

10.2 Revision and Update

The operator should have a procedure in place to allow flight crews to confirm prior to fight the revision number and/or date of EFB application software including where applicable, database versions (e.g., update to the latest aeronautical charts).

Flight crews should not have to confirm the revision dates for other databases that do not adversely affect flight operations. Procedures should specify what actions to take if the software applications or databases loaded on the EFB are out-of-date.

10.3 Workload and Crew Cooperation

In general, using an EFB should not increase crew's workload during critical phases of flight. For other flight phases, crew operating procedures should be designed to mitigate and/or control additional workload created by using an EFB. Workload should be apportioned between flight crew members to ensure ease of use and continued monitoring of other flight crew functions and aircraft equipment. The procedures should include specification of the phases of flight at which the flight crew may not use the EFB.

10.4 **EFB** Failure and Mitigation Means

- Operators should determine the need for software architectural features, 10.4.1 people, procedures, and/or equipment to eliminate, reduce, or control risks associated with an identified failure in a system.
- 10.4.2 If normal operational procedures require an EFB for each flight deck crew member, the installation should comply with the definition of independent EFB platforms.
- 10.4.3 Procedures should be in place to inform maintenance and flight crews about a fault or failure of the EFB, including actions to isolate it until corrective action is taken. Back-up procedures should be in place to prevent the use of erroneous information by flight crews. A reporting system for system failures should be established
- 10.4.4 Mitigation against EFB failure or impairment may be accomplished by one or a combination of system design;
 - separate and backup power sources for the EFB;
 - 2) electronic fall-back solutions to the last known, stable configuration (e.g. before an update)
 - 3) redundant EFB applications hosted on independent EFB platforms;

Electronic Fligh	t Bags (EFBs)

- paper products carried by selected crewmembers; 4)
- complete set of sealed paper backups in the flight deck; and/or 5)
- procedural means. 6)
- 10.4.5 Operators should include the requirements for EFB availability in the Operations Manual and/or as part of the minimum equipment list (MEL).

No. 2

CHAPTER 11

EFB USE IN GENERAL AVIATION OPERATIONS

11.1 Criteria for the Use of EFB Functions Used for the Safe Operation of Aircraft.

- 11.1.1 As stated in Annex 6, Part II, Section 2, Chapter 2.4, 2.4. 17, CAAT has established criteria for the operational use of EFB functions to be used for the safe operation of aeroplanes.
- 11.1.2 These criteria are considered to be additional requirements to EFB general requirements for the use of EFB functions as defined in 10.1 and should be based on the following paragraphs in this manual:
 - a) hardware considerations for portable EFBs (Chapter 3, item 3.3);
 - b) crew operating procedures (Chapter 5); and
 - c) flight crew training (Chapter 6).
 - d) EFB risk assessment (Chapter 7);
 - e) EFB failure and mitigation means (Chapter 7, item 7.2);
 - f) EFB management (Chapter 8, item 8.3.1);
- 11.1.3 When defining these criteria, CAAT should take into account the following principles:
 - a) the EFB system should not replace any system or equipment (e.g. navigation, communication, or surveillance system) that is required by aviation regulations;
 - b) when an EFB system replaces or substitutes regulatory material, it displays information which is functionally equivalent to it;

Electronic Flight Bags (EFBs)	Revision	No. 2
Liectionic i light bags (Li bs)	Date	8 September 2017

c) the use of the EFB does not adversely affect equipment or systems required for flight. Information on conducting electromagnetic interference tests can be found in 3.3.4 of this manual.

11.2 Additional Considerations for General Aviation

As stated in Chapter 7, the operational evaluation process is not required, but it is nevertheless recommended that the pilot-in-command and/or the operator/owner undergo an evaluation period to ensure mitigations to risk are addressed.

Risks include EFB failures, EFB misuse and other EFB malfunctions. In the specific case of the transition to a paperless cockpit, paper backups of the material on the EFB should be carried on board during the evaluation period and be readily available to the pilot-in-command. During this period, the pilot-in-command or owner/operator should validate that the EFB is as available and reliable as the paper-based system being replaced, if applicable.

Electronic Flight Bags (EFBs)

8 September 2017

APPENDIX A - GUIDANCE FOR EFB SOFTWARE APPLICATIONS

PREAMBLE

The purpose of this appendix is to provide information on best practices and general guidance for the development of commonly used EFB software applications. The specific examples used are not intended to preclude alternate methods which may accomplish similar objectives. In addition, operators who have been granted a specific approval for particular EFB software applications may wish to consider adopting the methods discussed within this attachment

Manufacturers, operators or vendors should carefully consider their particular operational needs when developing EFB software applications in an effort to maintain the highest safety and reliability standards for their specific-use case.

BACKGROUND

Knowing aircraft weight & balance and aircraft performance is elementary for pilots in order to safely control the aircraft trajectory in all flight phases.

Traditionally, weight & balance and aircraft performance calculations have been performed by using paper references such as tables or graphs, either by the pilots themselves, dispatchers or ramp agents. Those paper references, FCOM (or Operations Manual), have been provided by the manufacturers. The FCOM reflects the data published in the Airplane Flight Manual (AFM) and observes the limitations as set forth by the AFM, but conservatively simplifies the presentation of the data to facilitate their day-today use. Unlike the AFM, which is a certified document and where the certification has been obtained by the manufacturer, the FCOM is neither certified nor has it any approval.

The operator has to comply with the AFM. Where the operator publishes and uses an FCOM, it is his sole responsibility to obtain an operations approval from his authorities and, in due course, to prove that the FCOM remains compatible with the AFM.

Electronic Flight Bags (EFBs)

8 September 2017

It is worth noting that the AFM only covers takeoff performance and landing performance and a few cruise performance items (e.g. altitude and gradient capability, en-route limit weights).

Many airlines choose to customize FCOMs, mostly for commonality reasons when operating airplanes from different manufacturers, but also to reflect their own operating policies (e.g. restricting the use of certain flap settings or derates, etc.). This was supported by the manufacturers by providing the performance data in a digital format (usually software together with an aircraft specific database), so that performance data could be incorporated in an operator's in-house software.

In addition, a IATA working group has developed and continue to maintain a standardized format (SCAP format) to interface the aircraft performance software with the operator's inhouse or a third-party provider's software. This standard has been accepted and implemented by most of the aircraft manufacturers. As such, it provides the means to include any aircraft as a module into an operator's or a third-party provider's software environment, provided the aircraft manufacturer's software complies with this standard.

Currently there are SCAP specifications for take-off, landing, climb-out, inflight, noise calculations and performance monitoring. There is no SCAP specification for weight & balance, since the operators usually develop their own weight & balance software. Since there is no legal requirement to comply with SCAP, manufacturers need not provide SCAP modules. However, most manufacturers provide SCAP modules at least for take-off and landing performance.

Initially the operator's software was used to customize FCOM performance data or to create paper charts for the flight crews, so called "Runway Weight Limitation Charts". However, maintaining paper documents, especially for operators with large and varying fleets, was considered too costly, complex and error-prone. Moreover, the use of runway weight limitation charts typically induce conservatism and could be time consuming as it took place during preparation for the flight, a phase where pilots are subject to a high workload and distractions by other important tasks.

Electronic Flight Bags (EFBs)

8 September 2017

Along with the appearance of portable computers, the idea of "paperless cockpits" came up. Performance calculation tools were provided to the flight crews, allowing them to do calculations (mostly takeoff performance) when they need it and for the exact conditions they want. The objective was to reduce the complexity and the time needed for flight crews to obtain performance data and thus, to increase overall safety.

The two most common ways to provide performance information to flight crews are the EFB or an ACARS connection. With the ACARS connection a pilot will send input parameter like airport, runway, temperature, wind, etc. to software on the ground which does the performance calculation and sends the result back to the cockpit.

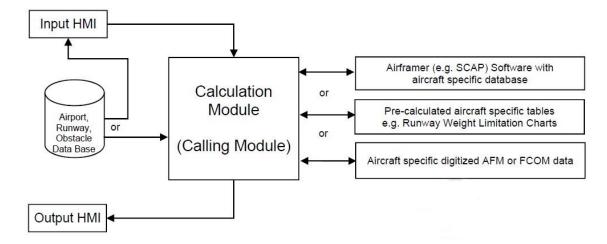
The EFB with the performance software included provides the means for crews to work selfcontained. The software used for either of those systems doesn't differ too much from the software that was used to generate runway weight limitation tables. However, where a check for e.g. a runway weight limitation table was done before publishing it to the flight crews, there is no check for the results calculated by EFB and ACARS. Thus, a comprehensive check of the software has to be done for the software prior to its release on-board the aircraft or on flight crews PED.

1. PERFORMANCE (TAKE-OFF, LANDING) and MASS AND BALANCE (M&B)

Introduction 1.1

1.1.1 The use of EFB software applications to compute performance and mass and balance (M&B) data has become common in recent years. The computing power and versatility offered by off-the-shelf electronic devices such as laptops and tablets, in relation to their flexibility for development and use (in comparison to certified platforms), have allowed the creation of numerous applications for most types of aircraft.

Electronic Flight Bags (EFBs)


- 1.1.2 The validity and integrity of performance and M&B data are of the highest relevance for the safety of the flight, and that these applications and the procedures for their use have to be properly evaluated before being approved for service.
- 1.1.3 A proper calculation workflow is of little use if data are not valid in the first place. The verification of the performance data and calculation algorithms correctness is therefore one essential step of the evaluation.
- 1.1.4 The other part of the evaluation has to deal with the user interface and crew procedures. Experience has shown that errors involving data entry or interpretation can be frequent. A proper humanmachine interface (HMI) on one side, with adequate administration and crew procedures and training on the other, are necessary to mitigate those errors.

1.2 *Performance applications architecture*

- 1.2.1 Algorithm based performance applications are usually separated into different layers:
 - a) HMI (human-machine interface);
 - *b*) *calculation module;*
 - c) aircraft-specific information; and
 - d) airport, runway, obstacle database (AODB).

Electronic Flight Bags (EFBs)	Revision:	No. 2
Liectionic Flight Days (LFDS)	Date:	8 September 2017

Figure A-1 shows a typical architecture of a performance application. Individual solutions that are in use by operators might not need to be as modular as shown, but rather, have the different parts integrated into one software. Alternatively, there might be solutions where modularity is taken to a point where some or all parts are supplied by different providers.

1.2.2 Input and output HMI.

- In the case of a connected-EFB or ACARS solution, only the HMIs may be hosted on board. Flight crews perform all necessary inputs on the Input HMI. Where a connection to the avionics is available (Class II & III), some inputs might be imported from there.
- 2) The Input HMI requests the calculation from the calculation module. The results are transferred to the Output HMI. The calculation request and the transfer of the results can be done within the software or by a request file that is transmitted via ACARS, 3G or other means to a ground module.

Electronic Flight Bags (EFBs)	Rev
LIEULI VIIIU I IIYIIL DAYS (LI DS)	<u> </u>

- 3) The input HMI takes the pilot's inputs (or data read from the avionics if applicable) and requests the calculation from the calculation module. The results are transferred to the output HMI.
- 4) Input and Output HMI might be different windows.
- 1.2.3 **Calculation module**. The calculation module is either part of the performance application on an EFB, or it is hosted on the ground for ACARS or connected EFB solutions. The calculation module will process the request data from the input HMI and determine the results, which are then sent back to the output HMI.
 - 1.2.3.1 Calculation modules are commonly setup using manufacturer SCAP software together with the respective aircraft-specific database. To obtain the results, the calculation module might call the SCAP software several times. Thus, the expression "calling module" has become widespread in the industry.
 - 1.2.3.2 Another way for the calculation module to obtain results is to interpolate between pre-calculated tables (e.g. runway weight limitation charts). Those tables are typically calculated using SCAP software. The SCAP software itself, however, is not specifically part of the performance application.
 - 1.2.3.3 Where manufacturer software is not available, paper AFM or FCOM charts may have to be digitized.
- 1.2.4 **Performance data sources.** Different sources of performance data can be used by performance applications. Performance data can be delivered in a digitized format:
 - a) SCAP modules or the equivalent delivered by the manufacturer. The SCAP module is either based on equations of motion or

Electronic Flight Bags (EFBs)	Revision:	No. 2
Liectionic Flight Days (LI DS)	Date:	8 September 2017

digitized AFM material. Modules may or may not come from an airworthiness approved electronic flight manual;

- b) the operator can build its own digitized performance data, based on the data published in the flight manual; and
- c) data based on pre-calculated take-off or landing performance tables.
- 1.2.5 *Airport, runway, obstacle database (AODB)*. Take-off and landing performance applications require information about airport, runway and obstacles. The AODB should provide this information in a suitable way. Usually, it is the part of the EFB performance applications that will be updated most often. The management of this data is critical. The operator is responsible for the data quality, accuracy and integrity of the runway and obstacle data, and should ensure this together with the data provider.

1.3 Performance and Mass and Balance (M&B) Applications Graphical User Interface (GUI)

- 1.3.1 Operators and CAAT should be aware of the criticality of performance calculations and incidents and accidents where pilot data entry errors have been a contributing factor. A good, well-designed graphical user interface (GUI) can significantly reduce the risk of errors. Below are examples of design guidelines that are supplemental to the software HMI considerations from Chapter 8:
 - a) input data and output data (results) should be clearly distinctive.
 All the information necessary for a given task should be presented together or easily accessible;
 - b) all data required for the performance and M&B applications should be prompted-for or displayed, including correct and unambiguous terms (names), units of measurement (e.g. kg

Electronic Flight Bags (EFBs)

or lbs). The units should match those from other cockpit sources for the same type of data;

- field names and abbreviations used in the GUI should correspond to those used in the manuals and should match the labels in the cockpit;
- d) if the application computes both dispatch (regulatory, factored) and other results (e.g. in-flight or not factored), the flight crew should be made aware of the nature of the results;
- e) the application should clearly distinguish user entries from default values or entries imported from other aircraft systems;
- f) the aircraft tail sign used for calculation must be clearly displayed to the flight crews, if relevant differences between tail signs exist. If tail signs are associated with different subfleets, the selected sub-fleet should be clearly displayed to the flight crew;
- g) the GUI should be designed so that input data are difficult to enter into the wrong fields of the GUI, by defining data entry rules;
- h) the GUI should only accept input parameters within the aircraft's operational envelope approved for the operator (commonly more limiting than the certified envelope). Consideration should be given to the plausibility of outputs within the AFM envelope but outside normal operating conditions;
- all critical performance calculation assumptions (e.g. use of thrust reversers, full or reduced thrust/power rating) should clearly be displayed. The assumptions made about any calculation should be at least as clear to pilots as similar information would be on a tabular chart;

Electronic Flight Bags (EFBs)

j)

Revision: No. 2 Date: 8 September 2017

the GUI should indicate to the pilot if a set of entries results in an unachievable operation (for instance, a negative stopping margin), in accordance with general HMI considerations (see Chapter 8);

- k) the user should be able to modify its input data easily, especially to account for last-minute changes;
- b when calculation results are displayed, the most critical input parameters should be visible at the same time;
- m) any active MEL/CDL/special restriction should be clearly visible and identifiable;
- n) in case of multiple runway selection, the output data should be clearly associated with the selected runway; and
- o) changes of runway data by the pilot should be clearly displayed and the changes should be easy to identify.
- 1.3.2 The development, testing and approval of a GUI are considerable investments and system integrators and operators are encouraged to evaluate the usability of an existing GUI before developing a new GUI themselves. It is also recommended to review the GUI after some time of operation in the everyday environment for unforeseeable common human errors with special regard to the specific use case of the operator, which require changes or enhancement of the given design.
- 1.3.3 Any new or modified GUI requires exhaustive testing of this component.
- 1.3.4 Any major GUI modification requires a new risk assessment by the operator.

Electronic Flight Bags (EFBs)

1.4 Performance Application Testing

- 1.4.1 Operators and CAAT should be aware of the criticality of performance calculations and the importance of the correctness of the calculation results delivered by performance algorithms or calculation modules.
- 1.4.2 The development, testing and approval or certification of a performance algorithm or calculation modules is a considerable investment.
- 1.4.3 Depending on the EFB set-up three different test phases may apply:
 - a) the correctness test checks whether the performance results are consistent with the approved data;
 - b) a robustness and constraint test checks for sensible system behaviour in case incorrect values have been entered; and
 - c) finally, the integration test shall make sure that the application runs in the EFB environment without any issue.

1.4.4 Correctness test

1.4.4.1 When developing a performance calculation module which processes entry variables (e.g. take-off or landing performance calculations), the calculation outputs must be verified. Due to the large number of parameters influencing the results of performance applications, testing all possible combinations of parameter values is not feasible.

Test cases should, therefore, be defined to sufficiently cover the operations of the aircraft under a representative cross section of conditions (e.g. for performance applications: runway state and slope, different wind conditions and pressure altitudes, various aircraft configuration including failures with a performance impact, etc.), and take into account the data sources and their individual characteristics (e.g. corner points, break points, etc.).

Electronic Flight Bags (EFBs)	Revision:	No. 2	
Liectionic Flight Days (LFDS)	Date:	8 September 2017	

The evaluation effort should be adapted to the type of data source used (see 1.2 of this appendix).

- 1.4.4.2 For selected calculations, a detailed check against approved data or, where data are not approved in the AFM, the best available data has to be documented. Those calculations must prove that the module's results will match the data source or are consistently conservative throughout the entire operating envelope of the aircraft.
- 1.4.4.3 An applicant should provide an explanation of the methods used to evaluate a sufficient number of testing points with respect to the design of their software application and databases.
- 1.4.4.4 Tests can be documented graphically or in tabular form, as is acceptable to the CAAT.
- 1.4.5 Robustness and constraint test
 - 1.4.5.1 Sufficient test cases shall make sure that the performance application provides understandable answers or instructions if incorrect input values (outside envelope, wrong combination of inputs) are entered.
 - 1.4.5.2 Even if using incorrect input values, the application shall not fail or get into a state that would require special skills or procedures to bring it back to an operational state.
 - 1.4.5.3 The testing should show that the application, in its operating environment (operating software (OS) and hardware included), is stable and deterministic, i.e. identical answers are generated each time the process is entered with identical parameters.

Electronic Flight Bags (EFBs)	Revision:	No. 2
Liectionic i light bags (Li bs)	Date:	8 Sep

8 September 2017

1.4.6 Integration testing

- 1.4.6.1 Typically, the design and test of performance applications are done on a different hardware and software environment than the EFB. Thus, integration testing shall make sure that the application runs properly on the EFB environment. These tests should be performed using the final system (e.g. a connected EFB, hosting the performance HMI, while accessing a ground-based performance engine and database via a mobile phone link.)
- 1.4.6.2 Integration testing shall ensure the performance application(s) produces the same results on the EFB as on the computer it was designed and tested on. In addition, the performance application shall not interfere adversely with other EFB applications or vice versa.
- 1.4.6.3 Where data from other applications are processed (e.g. T/O performance using results from the M&B application), the correct interfacing of those data shall be tested.

1.5 M&B Application Testing

This section is reserved for future update

1.6 **Procedures, Management and Training**

- 1.6.1 When approving the operational use of a performance or M&B application(s), due consideration shall also be given to all other processes that contribute to the use of the application.
- 1.6.2 *Crew operating procedures*
 - 1.6.2.1 Procedures should be developed that define any new roles that the flight crew and the flight dispatcher may have in

Electronic Flight Bags (EFBs)	Revision:	No. 2
LIECTIONIC I NYNT Days (LI DS)	Date:	8 Sept

8 September 2017

creating, reviewing, and using performance or M&B calculations supported by EFBs.

- 1.6.2.2 Performance and M&B calculations should be performed by both the pilots independently on independent EFBs, if available.
- 1.6.2.3 The results should be cross-checked and differences discussed before the results are used operationally.
- 1.6.2.4 Crew procedures should ensure that, in the event of loss of functionality by an EFB through either the loss of a single application or the failure of the device hosting the application, a high level of safety can be maintained. Consistency with the EFB risk assessment assumptions should be confirmed.
- 1.6.3 Procedures for EFB security and quality assurance
 - 1.6.3.1 Application and data should be checked for integrity and protected against unauthorized manipulation, e. g. by checking file checksum values at EFB start-up or prior to each calculation.
 - 1.6.3.2 A quality assurance process should apply for all performancerelated software application modifications.
- 1.6.4 *Procedures for addressing EFB failures*
 - 1.6.4.1 Procedures should be developed and introduced to assure that EFB failure events, especially those where the EFB failure leads to the calculation of misleading information (such as an error in the AODB), is immediately brought to the attention of other pilots who may be affected.

Electronic Flight Bags (EFBs)	Revision:	No. 2
Liectionic i light bags (Li bs)	Date:	8 September 2017

1.6.4.2 A reporting system shall be in place allowing the operator to detect the nature of problems and to decide on mitigations.

1.6.5 *Flight crew training*

- 1.6.5.1 Training should emphasize the importance of executing all performance calculations in accordance with SOP to assure fully independent calculations. As an example, one pilot should not announce the values to be entered into the HMI of the performance applications, because a wrong announcement could lead to both calculations showing the same misleading results.
- 1.6.5.2 Training should include cross-checks (e.g. with avionics or flight plan data) and gross error check methods (e.g. "rule-of-thumb") that may be used by pilots to identify order-of-magnitude errors like entering the ZFM as TOM or transposed digits.
- 1.6.5.3 It should be understood, that the use of EFBs makes performance calculations simple and does not eliminate the necessity of good pilot performance knowledge.
- 1.6.5.4 Through the use of EFBs, new procedures may be introduced (e.g. the use of multiple flaps settings for take-off) and pilots should be trained accordingly.
- 1.6.6 Management of performance EFB applications

Within the operator's organization, the responsibilities between the performance management, other departments involved and the EFB management should be if separate, clear and well-documented.

Furthermore, an operator needs to utilize a designated person/group who is sufficiently trained to provide support for the performance tools.

Electronic Flight Bags (EFBs)	Rev
LIEUTIONIU I NYNT Days (LI DS)	Det

This person/group must have comprehensive knowledge of current regulations, aircraft performance and performance software (e.g. SCAP modules) used on the EFB.

2. ELECTRONIC CHARTING

2.1 Description

- 2.1.1 An EFB software application that supports route planning, route monitoring and navigation by displaying required information and includes visual, instrument and aerodrome charts.
- 2.1.2 Considerations:
 - a) electronic aeronautical charts should provide, at least to a minimum, a level of information and usability comparable to paper charts;
 - b) for approach charts, the EFB software application should be able to show the entire instrument approach procedure all at once on the intended EFB hardware, with a degree of legibility and clarity equivalent to that of a paper chart;
 - an EFB display may not be capable of presenting an entire chart (e.g. airport diagram, departure/arrival procedures, etc.) if the chart is the expanded detail (fold-over) type;
 - d) panning, scrolling, zooming, rotating, or other active manipulation is permissible; and
 - e) for data driven charts, it should be assured that shown symbols and labels remain clearly readable, (e.g. not overlapping each other). Layers of data may be used for de-cluttering.

Note — See also ICAO Annex 4 — Aeronautical Charts, Chapter 20 — Electronic Aeronautical Chart Display —

3. TAXI AID CAMERA SYSTEM (TACS)

3.1 Description

- 3.1.1 TACS is an EFB software application to increase situational awareness during taxi by displaying electronic real-time images of the actual external scene.
- 3.1.2 Considerations:
 - a) ensure real- time, live display of received imagery without noticeable time-lapse;
 - b) adequate image quality during foreseeable environmental lighting conditions;
 - c) display of turning or aircraft dimension aids may be provided, (e.g. turning radius, undercarriage track width, etc.). In such cases, the information provided to the pilot should be verified to be accurate;
 - d) connection to one or more installed vision systems. Vision systems include, but are not limited to, visible light cameras, forward-looking infrared sensors and intensifying low-light level images;
 - e) operators should establish SOPs for use of TACS. Training should emphasize use of TACS as an additional resource and not as a primary means for ground navigation or avoiding obstacles; and
 - f) pilot use of TACS should not induce disorientation.

Electronic Flight Bags (EFBs)	R
LIEULIUNIU FIIYIIL DAYS (LI DS)	_

4. AIRPORT MOVING MAP DISPLAY (AMMD)

- 4.1 This section provides some consideration on how to demonstrate the safe operational use for AMMD applications to be hosted on EFBs.
- 4.2 An EFB AMMD with own-ship position symbol is designed to assist flight crews in orienting themselves on the airport surface to improve pilot positional awareness during taxi operations. The AMMD function is not to be used as the primary means of taxiing navigation. This application is limited to ground operations only.
- 4.3 The AMMD application is designed to indicate aeroplane position and heading (in case the own-ship position symbol is directional) on dynamic maps. The maps graphically portray runways, taxiways and other airport features to support taxi and taxi-related operations. Additionally, warning functions can be provided which notify crews about potentially dangerous conditions, i.e. inadvertently entering a RWY.
- 4.4 Considerations for AMMD:
 - an AMMD application should not be used as the primary means of taxiing navigation; primary means of taxiing navigation remains the use of normal procedures and direct visual observation out of the cockpit window;
 - b) the total system error of the end-to-end system should be specified and characterized by either the AMMD software developer, EFB vendor or OEM, etc. The accuracy should be sufficient to ensure that the own-ship position symbol is depicted on the correct runway or taxiway;
 - c) the AMMD should provide compensation means for the installationdependent antenna position bias error, i.e. along-track error associated to the GNSS antenna position to the flight deck;

Electronic Flight Bags (EFBs)

- the system should automatically remove the own-ship position symbol when the aircraft is in flight (e.g. weight on wheels, speed monitoring) and when the positional uncertainty exceeds the maximum defined value;
- e) it is recommended that the AMMD detects, annunciates to the flight crew and fully removes depiction of own-ship data, in case of any loss or degradation of AMMD functions due to failures such as memory corruption, frozen system, latency, etc.;
- f) the AMMD database should comply with applicable Standards for use in aviation (refer to ICAO Annex 6, Part I, 7.4 — Electronic navigation and data management); and
- g) the operator should review the documents and the data provided by the AMMD developer and ensure that installation requirements of the AMMD software in the specific EFB platform and aircraft are addressed.

4.5 Flight Crew Training

- 4.5.1 The operator should define specific training in support of an AMMD's implementation. It should be included in the operator's overall EFB training.
- 4.5.2 The operations manual or user guide shall provide sufficient information to flight crews, including limitations and accuracy of the system and all related procedures.

5. ELECTRONIC CHECKLIST

This section is reserved for future update.

APPENDIX B - SPECIFIC OPERATIONAL APPROVAL CHECKLIST

1. INTRODUCTION

- 1.1 The checklists below constitute an example of what may be used during a Phase 3 review by CAAT of the EFB operational evaluation process.
- 1.2 Checklist items can be customized to the specific EFB and applications being evaluated.
- 1.3 Checklist items are designed so that some questions may be not applicable (check "N/A"). Questions answered as "No" are meant to allow identifying deficiencies that should be corrected and revalidated prior to approval being issued.

Electronic	Flight	Bags	(FFBs)
	i ngin	Days	$(\Box D3)$

No. 2

2. EXAMPLE OF SPECIFIC OPERATIONAL APPROVAL CHECKLIST

2.1 OPS-EFB PM: Initial Issue – Policy and Procedure Manual Review (Form: SPOPS-AIR-A11-EFB)

1. Introduction	
EFB general philosophy	Yes No N/A
EFB limitations	Yes No N/A
Updates and change management	Yes No N/A
2. EFB management	
Responsibilities	Yes No N/A
Data management	Yes No N/A
Updates and change management	Yes No N/A
3. Hardware description	
EFB system architecture	Yes No N/A
Hardware configuration control	Yes No N/A
4. Software description	
Operating system description	Yes No N/A
List and description of application hosted	Yes No N/A

Electronic Flight Bags (EFBs)

Revision: Date: No. 2

e:

5. Flight crew training		
Flight crew training	Yes No N/A	
6. Operating procedures		
Operating procedures 7. Maintenance considerations	Yes No N/A	
Maintenance considerations	Yes NO N/A	
8. Security considerations		
Security considerations	Yes No N/A	

Electronic Flight Bags (EFBs)

No. 2

2.2 EFB – Flight Operations Assessment Checklist (Form: SPOPS-OPS-A11-EFB)

Part 1-Hardware	
Have the installed EFB resources been certified by a CAAT to accepted aviation standards either during the certification of the aircraft, service bulletin by the original equipment manufacturer, or	Yes 🗆 No 🗆
by a third party STC?	N/A
Has the operator assessed the physical use of the device on the flight deck to include safe	Yes
stowage, crashworthiness, safety and use under normal environmental conditions including turbulence?	No N/A
Will the display be readable in all the ambient lighting conditions, both day and night,	Yes
encountered on the flight deck?	No N/A
If the EFB device is intended to be used during critical phases of flight, does it demonstrate that	Yes
it meets environmental qualification standards for radiated emissions for equipment operating in an airborne environment?	No 🗌 N/A 🗌
Has the EFB been tested to confirm operation in the anticipated environmental conditions (e.g.,	Yes 🗆
temperature range, low humidity, altitude, etc.)?	No D N/A
Is power to the EFB, either by battery and/or supplied power, available to the extent required for	Yes 🗆
the intended operation?	No 🗆 N/A 🗆
Have procedures been developed to establish the level of battery capacity degradation during	Yes
the life of the EFB?	No 🗌 N/A 🗌
Have procedures been developed which meet or exceed the OEM's battery recommendations?	Yes
	No D N/A
Has the operator ensured that the EFB hardware meets the requirements of the EFB software	Yes 🗆
applications intended to be operated (e.g. in term of memory or CPU requirements)?	No 🗆 N/A 🗆
Part 2 - Software	1
Name of software application	Yes 🛛
	No 🗌 N/A 🗌
Does the software application installed on the EFB enable it to replace document and charts	Yes 🗆
required to be carried on board the aircraft?	No D N/A
Does the software application proposed require regulatory approval prior to operational use?	Yes 🗆
	No D N/A

Electronic Flight Bags (EFBs)

Revision: Date:

8 September 2017

No. 2

Has the software application been evaluated to confirm that the information being provided to the pilot is a true and accurate representation of the documents or chats being replaced?	Yes □ No □ N/A □
Has the software application been evaluated to confirm that the computational solution/s being provided to the pilot is a true and accurate solution (e.g. weight and balance, performance, etc.)?	Yes No N/A
Does the software application have adequate security measures to prevent unauthorized database modifications and prevent contamination by external malware?	Yes No N/A
Does the EFB system provide, in general, a consistent and intuitive user interface, within and across the various hosted applications?	Yes No N/A
Has the EFB software been evaluated to consider HMI to include ease of access to common and time-critical system functions, consistency of symbols, terms and abbreviations, legibility of text, system responsiveness, methods of interaction, use of colour, display of system status, error	Yes No N/A
messages, management of multiple applications, off screen text/content and use of active regions?	
Does the software application follow basic Human Factors guidance as described in the software HMI and the workload section?	Yes No N/A
Has the operator considered the interdependencies of software application and the EFB platform operating system, (e.g., a failed PDF viewer may block the pilot from accessing EFB applications)?	Yes No N/A
Part 3 - Installation	
Mounting	
If EFB is not mounted, can it be easily stowed securely?	Yes No N/A
Can the EFB be easily stowed securely but remain readily accessible in flight?	Yes No N/A
Has the installation of the mounting device been approved in accordance with the appropriate airworthiness regulations?	Yes No N/A
If the mounting device for the EFB is moveable, can it be easily be locked in place?	Yes No N/A
Has a provision been provided to secure or lock the mounting device in a position out of the way of flight crew operations?	Yes No N/A

Electronic Flight Bags (EFBs)

Revision: Date:

No. 2

Is it evident that there are no mechanical interference issues with the mounting device, either on the side panel (side stick controller) or on the control yoke in term of full and free movement under all operating conditions and non-interference with buckles, etc.?	Yes No N/A
If EFB mounting is on the control yoke, has it been checked for negative impact (e.g. has the flight control system dynamics been checked)?	Yes No N/A
Has it been confirmed that the mounted EFB location does not impede crew ingress, and emergency egress path?	Yes No N/A
Is it evident that the mounted EFB does not obstruct visual or physical access to aircraft displays or controls?	Yes D No D N/A
Does the mounted EFB location minimize the effects of glare and/or reflections?	Yes D No D N/A D
Does the mounting method for the EFB allow easy access to the EFB controls and a clear unobstructed view of the EFB display?	Yes D No D N/A D
Is the EFB mounting easily adjustable by flight crew to compensate for glare and reflections?	Yes D No D N/A D
Does the placement of the EFB allow sufficient airflow around the unit, if required?	Yes D No D N/A D
Power Connection/Batteries	
Is there a means other than a circuit breaker to turn off the power outlet (e.g., can the pilot easily remove the plug from the installed outlet)?	Yes No N/A
Dose a placard specify electrical characteristics of the power outlet (e.g., 115 VAC, 60 Hz, 100W)?	Yes No N/A
If the EFB has an alternate backup power source, does the backup source have an equivalent level of safety to the primary power source?	Yes No N/A
Is the power source suitable for the device?	Yes D No D N/A D
Have guidance/procedure been provided for battery failure or malfunction?	Yes D No D N/A

Electronic Flight Bags (EFBs)

Revision: Date:

8 September 2017

No. 2

Is power to the EFB, either by battery and/or supplied power, available to the extent required for	Yes 🛛
the intended operation?	No
	N/A
Has the operator ensured, over the whole lifetime of the EFB, that it's battery is adequate for its	Yes
intended operation?	No
	N/A
Has the operator ensured that the batteries are compliance to acceptable standards?	Yes
	No
	N/A
Cabling	
Is it evident that the EFB cabling does not present a hazard (e.g., it does not interfere with flight	Yes 🛛
controls movement, egress, oxygen mask deployment, etc.)?	No 🗆
	N/A
Is there a means to secure the EFB cabling, if loose cables could compromise task performance	Yes
and safety?	No 🗆
	N/A
Has the operator ensured that any cabling attached to the EFB, whether in the dedicated	Yes
mounting or when hand-held does not present an operational or safety hazard?	No
	N/A
Stowage	
Is stowage readily accessible in flight?	Yes
	No
	N/A
Is it evident that stowage does not cause any hazard during aircraft operations?	Yes
	No
	N/A
Is it evident that when the EFB is stowed, the device and its securing mechanism does not	Yes
intrude into the flight deck space to the extent that they cause either visual or physical	No
obstruction of flight controls/display and/or egress routes?	N/A
Part 4 - Usability	
Operation	
Is the EFB data legible under the full range of lighting conditions expected on the flight deck,	Yes
including using direct sunlight?	No
	N/A
Can the brightness or contrast of the EFB display be easily adjusted by the flight crew for various	Yes
lighting conditions?	No
	N/A
Can the hand held EFB be easily stowed during flight?	Yes 🛛
	No
	N/A

Electronic Flight Bags (EFBs)

Revision: Date:

No. 2

Is it evident that the location of the EFB does not interfere with any normal or emergency procedures?	Yes No N/A
Configuration	
Can the flight crew easily determine the validity and currency of the software application and database installed on the EFB, if required?	Yes D No D N/A
Part 5 - Management	
EFB Management	
Is the EFB Manager suitably trained?	Yes D No D N/A
Is one person designated as the EFB Manager responsible for the complete system with appropriate authority within the operator's management structure?	Yes No N/A
Do the listed responsibilities of the EFB Manager match the requirements of the EFB system?	Yes No N/A
Are there adequate resources assigned for managing the EFB?	Yes No N/A
Crew Procedure	
Is there a clear description of the system, its operational philosophy and operational limitations?	Yes No N/A
If there is an AFM or AFM supplement limitation, has the information been incorporated into the company Operations Manual?	Yes No N/A
Are the requirements for EFB availability in the Operations Manual and/or as part of the minimum equipment list (MEL)?	Yes D No D N/A
Have crew procedures for EFB operation been integrated within the existing Operations Manual?	Yes No N/A
Are there suitable crew cross-checks for verifying safety-critical data (e.g., performance, weight & balance calculations)?	Yes D No D N/A
If an EFB generates information similar to that generated by existing flight deck systems, do procedures identify which information will be primary?	Yes No N/A

Electronic Flight Bags (EFBs)

Revision: Date: No. 2

Are there procedures when information provided by an EFB does not agree with that from other flight deck sources, or, if more than one EFB is used, when one EFB disagrees with another?	Yes 🗆
	No 🗆 N/A 🗆
Are there procedures that specify what actions to take if the software applications or databases loaded on the EFB are out of date?	Yes 🛛
	No □ N/A □
Are there back-up procedures in place to prevent the use of erroneous information by flight	Yes
crews?	No □ N/A □
Is there a reporting system for system failures?	Yes 🗆
	No D N/A
Have crew operating procedures been designed to mitigate and/or control additional workload created by using an EFB?	Yes □ No □
	N/A
Are there procedures in place to inform maintenance and flight crews about a fault or failure of the EFB, including actions to isolate it until corrective action is taken?	Yes 🗆
,,	No □ N/A □
Do the procedures cover system re-boots, lock-ups and recovery from incorrect crew actions?	Yes 🗆
	No □ N/A □
Operational Risk Analysis	
Are there procedures/guidance for loss of data and identification of corrupt/erroneous outputs?	Yes 🛛
	No D N/A
Are there contingency procedures for total or partial EFB failure?	Yes 🗆
	No D N/A
Is there a procedure in the event of a dual EFB failure (e.g., use of paper checklist or a third	Yes 🛛
EFB)?	No □ N/A □
Have the EFB redundancy requirements been incorporated into the Ops Manual?	Yes 🗆
	No 🗆 N/A 🗆
Training	
Does the training material match the EFB equipment status and published procedures?	Yes 🛛
	No D N/A
Does the training program include human factors/CRM in relation to EFB use?	Yes 🛛
	No D N/A

Electronic Flight Bags (EFBs)

Revision: Date:

No. 2

Does the training program incorporate training system changes and upgrades in relation to EFB	
operation?	Yes 🗆
	No
	N/A
Does the training cover the list of bulleted items in Section 7 "Flight Crew Training"?	
Does the training cover the list of bulleted items in Section 7 Flight Crew Hanning ?	Yes 🗆
	No 🗌
	N/A
Hardware Management Procedures	
Are there documented procedures for the control of EFB hardware?	Yes
	No 🗆
	N/A
Do the procedures include repair, replacement and maintenance of EFB equipment and	Yes
peripherals?	
	No 🗌
	N/A
Do the procedures include validation following repair?	Yes 🛛
	No 🗆
	N/A
Software Management Procedures	
Are there documented procedures for the configuration control of loaded software?	
Are there documented procedures for the configuration control of folded software:	Yes 🗆
	No
	N/A
Are the access rights for personnel to install or modify software components clearly defined?	Yes
	res
	No 🗆
	N/A
Are there adequate controls to prevent user corruption of operating systems and software?	Yes
	No
	N/A
Are there adequate security measures to prevent system degradation, malware and	Yes
unauthorized access?	
	No 🗆
	N/A
Are procedures defined to track database expiration/updates?	Yes 🗆
	No
	N/A
Are there documented procedures for the control and management of data?	Yes 🛛
· · ·	No 🗆
	N/A
Are the access rights for users and managers clearly defined?	Yes 🗆
	No
	N/A
Are there extended a prevent upon commution of date 0	
Are there adequate safeguards to prevent user corruption of data?	Yes 🛛
	No 🗆
	N/A

Electronic Flight Bags (EFBs)

Revision: Date: No. 2

2: 2

If the hardware is assigned to the flight crew, does a policy on private use exist?	Yes	
	No	
	N/A	

No. 2

2.3 EFB – Airworthiness Assessment Checklist (Form: SPOPS-AIR-A11-EFB)

0. Preliminary	
0.1 Operator (For AOC)	
0.2 Aircraft registration/s (Non AOC):	
0.3 Aircraft make and model	
0.4 Engine Make and Model	
0.5 EFB approvals being sought (e.g. portable, installed)	
0.6 Initial approbal (Yes/No)	
0.7 Additional aircraft (Yes/No)	
0.0 List of aircraft Degistration No and Cariol No. requested for EED entroval	
0.8 List of aircraft (Registration No and Serial No.) requested for EFB approval	
0.9 Inspectors name	
0.10 Date of review	
	••••••
1. EFB Status	
Is the EFB Portable or Installed?	Yes
	No
	N/A
If Portable with no mounting provisions (e.g. brackets, cables) then there is no further AW	Yes
Assessment. It is FOI investigation?	No
	N/A
Is the EFB Addressed in AFM (installed resource or in stalled only)?	Yes 🗌
	No 🗆
	N/A
2. Maintenance programme and MEL	
Does the AMP contain tasks related to EFB (Installed EFB or installed resources (bracket,	Yes 🗌
cables, connectors) only)?	No 🗆
	N/A

Electronic Flight Bags (EFBs)

Revision: No. 2 Date: 8 Sep

Does the MEL address the EFB?	Yes □ No □
	N/A
3. Installed Resources	·
Check there is an CAAT approved Mod or STC for the EFB (installed EFB or installed resources	Yes 🗆
only)	No 🗆 N/A 🗆
Check whether the EFB mounting, with and without EFB installed, can obstruct controls or affect	Yes 🗆
pilot operation of required aircraft equipment	No 🗌 N/A 🗌
Check for obscuration of displays	Yes 🗌
	No □ N/A □
Check accessibility of cockpit oxygen masks near EFB mounts	Yes
	No 🗆
	N/A
4. Personnel and Training	
Does the operator have an EFB administrator under control of its Operation Dept?	Yes 🗆
	No N/A
Does the AMO have the appropriate tooling and test equipment to deal with the EFB? Such as	Yes
data loaders	No 🗆
	N/A
Check for any other special instructions	Yes
	No 🗆 N/A 🗆
5. Investigation Closure	
Inform the FOI of AW EFB acceptance or rejection	Yes
	No N/A
Compile dossier of checklist, correspondence and audit records. For AOC approvals file under	Yes
AOC records, for Non AOC file in the aircraft registration file	No □ N/A □

8 September 2017

APPENDIX C- EXAMPLE OF OPERATIONS SPECIFICATIONS AND OPERATIONS MANUAL CONTENT

When an EFB function is to be used for the safe operation of an aeroplane (see Chapter 6), an entry must be included in the operators' operations specifications approved by CAAT. The operations specification will reference the location in the operations manual where the approved EFB applications are detailed. Figure C-1 below shows an example of a specific approval EFB entry.

OPERATIONS SPECIFICATIONS (Subject to the approved conditions in the operations manual)					
SPECIFIC APPROVAL	YES	NO	DESCRIPTION	REMARKS	
Continuing airworthiness		\geq			
EFB for A/C type Type1			19 - Specifically approved EFB hardware and software applications for A/C type <i>Type1</i> are contained in [operations manual reference]		
EFB for A/C type <i>Type2</i>			- Specifically approved EFB hardware and software applications for A/C type <i>Type2</i> are contained in [operations manual reference]		
Other	1	1]		
19. List of EFB fun	19. List of EFB functions with any applicable limitations.				

Figure C-1. Example of a specific approval EFB entry in an Ops Spec

Notes.— As stipulated by ICAO, boxes YES/NO are not used since some EFB functions might not require an operational approval. Other EFB functions not requiring an EFB approval should not be listed in the operations specifications form.

Electronic Flight Bags (EFBs)

8 September 2017

The specific EFB approvals referenced in the operations specifications form should have a companion detailed list of EFB-approved hardware and software applications. This list should be located in the operations manual in a table and be updated through the normal operations manual approval process established by the State. Figure C-2 below contains an example of a companion EFB-specific approval table.

The "Approved hardware for A/C type" column should match the "SPECIAL AUTHORIZATIONS" column of the operations specifications form. The "Approved EFB applications" column should indicate the EFB functions, including versions which are specifically approved with any applicable limitations. The "Specific references and/or remarks" column should include the application version in addition to any specific operations manual reference and other remarks if applicable.

EFB specifically approved hardware and software applications				
Approved hardware for A/C type	Specifically approved EFB applications (List of EFB functions, versions and any applicable limitations.)	Specific references and/or remarks		
EFB for A/C type Type1	 Aircraft performance calculation (take-off and landing) – AppName1 ver x.x 	See procedures in operations manual page X Back up: Quick Reference Handbook		
	- Airport moving map - AppName2 ver x.x			
	- Charts application : En route - AppName3 ver x.x	Refer to operations manual page X		
		See operations manual page Y		
	 Airport charts (SID, STAR, approach) – AppName4 ver x.x 	Paper back-up operation		
		Paperless operation		
		Refer to operations manual page Z		
EFB for A/C type Type2	- Charts application : En route - AppName3	See operations manual page X		
	ver x.x	Paper back-up operation		

Figure C-2. Example of a companion EFB specific approval table for an Operations Manual

No. 2

APPENDIX D-EFB POLICY AND PROCEDURES MANUAL

These are the typical contents of an EFB policy and procedures manual that can be fully or partly integrated in the operations manual, if applicable.

The structure and content of the EFB policy and procedures manual should correspond to the size of the operator, the complexity of its activities and the complexity of the EFB used.

Introduction

EFB general philosophy

EFB limitations

EFB approved hardware and software applications

• EFB management

Responsibilities

Data management

Updates and changes management

Hardware description

EFB system architecture

Hardware configuration control

Software description

Operating system description

List and description of applications hosted

Electronic Flight Bags (EFBs)	Revision:	No. 2
Electronic Flight Bays (EFBS)	Date:	8 September 2017

- Flight crew training
- Operating procedures
- Maintenance considerations
- Security considerations

Electronic Flight Bags (EFBs)

8 September 2017

ATTACHMENT 1 - EXAMPLE OF A LETTER OF APPROVAL

The following is an example of a letter of approval which could be used by the CAA to provide and document an EFB approval. The information mentioned in this example letter of approval should be considered the minimum documentation of the EFB approval. The operator may want have it available on board its aircraft where it could be presented to authorities, e.g. in case of ramp checks.

Letter of Approval dated YYYY-MM-DD

Approval is granted for the following EFB applications:

Software applications listed in Attachment 1

EFB Hardware Manufacturer / Make or Model	Software application	Fleets	Restriction / Comment

Other software applications not listed in Appendix 1 (if applicable)

Software application	Fleets	Restriction / Comment

All other information in regard to the approval are documented in the operator's manual. This Letter of Approval will be revised if there is a change in the information above. A copy of this document must be kept on board.

On behalf

Name of inspector

Hand or electronic signature of inspector