ประกาศสานักงานการบินพลเรือนแห่งประเทศไทย
เรื่อง การเดินอากาศด้วยเสลี่ยมคอเตอร์ของผู้ดำเนินการเดินอากาศ พ.ศ. ๒๕๖๑

เพื่อดำเนินการให้การเดินอากาศด้วยเสลี่ยมคอเตอร์ของผู้ดำเนินการเดินอากาศเป็นไปตามมาตรฐานที่กำหนดในภาคผนวก Part III-International Operations - Helicopters (Amendment 21) ของยูนิตีเวกเกอร์นี่ด้วยการบินพลเรือนระหว่างประเทศ อีกทั้งยังต้องความใน ๒๗.๔ แห่งข้อบังคับของคณะกรรมการการบินพลเรือน ฉบับที่ ๘๖ ว่าด้วยการเดินอากาศของอากาศสถาน ประกาศณ วันที่ ๓๐ ธันวาคม พ.ศ. ๒๕๕๔ ซึ่งกำหนดให้ผู้ได้รับใบอนุญาตการเดินอากาศให้ทำการเดินอากาศ ต้องดำเนินการให้เป็นไปตามข้อกำหนดที่สานักงานการบินพลเรือนแห่งประเทศไทยประกาศกำหนดในเรื่อง ระบบจัดการความปลอดภัยของผู้ได้รับใบอนุญาตการเดินอากาศ การปฏิบัติงาน และการรับรองการปฏิบัติการบิน เครื่องจักร อุปกรณ์ และเอกสารการบินประจำอากาศสถาน ผู้ประจำหน้าที่อากาศ (Flight crew) ผู้มีสมุดบุคคล และบัตริก พนักงานดับเพลิงในอากาศสถาน การรักษาความปลอดภัยในอากาศสถาน และการรับรู้ภัยอากาศสถาน และอัตราตามารยาท ๘๗ (๑) (ก) (กย) (ก) (ก) และ (ก) แห่งประกาศกำหนดการบินพลเรือนแห่งประเทศไทย พ.ศ. ๒๕๕๔ สำนักงานการบินพลเรือนแห่งประเทศไทยให้จึงออกประกาศไว้ ดังต่อไปนี้

ข้อ ๑ ประกาศนี้เรียกว่า “ประกาศสานักงานการบินพลเรือนแห่งประเทศไทย เรื่อง การเดินอากาศด้วยเสลี่ยมคอเตอร์ของผู้ดำเนินการเดินอากาศ พ.ศ. ๒๕๖๑”

ข้อ ๒ ให้ยกเลิกประกาศกรมการบินพลเรือน เรื่อง การเดินอากาศด้วยเสลี่ยมคอเตอร์ของผู้ดำเนินการเดินอากาศ พ.ศ. ๒๕๕๘ ประกาศณ วันที่ ๖ ธันวาคม พ.ศ. ๒๕๕๘

ข้อ ๓ ให้ยกเลิกความในข้อ ๒ (ก) ของประกาศกรมการบินพลเรือน เรื่อง จำนวนผู้ประจำหน้าที่ประจำหน้าที่อากาศสถานของผู้ได้รับใบอนุญาตการเดินอากาศ พ.ศ. ๒๕๖๑ ประกาศณ วันที่ ๓๐ กันยายน พ.ศ. ๒๕๖๑

ข้อ ๔ ประกาศนี้ให้ใช้บังคับตั้งแต่วันที่ประกาศนี้ เป็นต้นไป

ข้อ ๕ หลักเกณฑ์เกี่ยวกับระบบการจัดการความปลอดภัยของผู้ดำเนินการเดินอากาศ การปฏิบัติการบิน เครื่องจักร อุปกรณ์ และเอกสารประกอบการเดินอากาศ การรับรู้ภัยอากาศสถาน ผู้ประจำหน้าที่อากาศสถาน ผู้ดำเนินการเดินอากาศ ต้องปฏิบัติให้เป็นไปตามหลักเกณฑ์ที่กำหนดไว้ในเสลี่ยมคอเตอร์ การรักษาความปลอดภัยในอุปกรณ์ การตรวจรับรองระบบเครื่องบินที่ทำการบิน เครื่องจักร และอุปกรณ์และเอกสารการเดินอากาศ ผู้ดำเนินการเดินอากาศ ต้องดำเนินการให้เป็นไปตามหลักเกณฑ์ที่กำหนดไว้ใน Helicopter Operations Requirements แนบท้ายประกาศนี้

ข้อ ๖ การออกใบอนุญาตของผู้ดำเนินการเดินอากาศ - เสลี่ยมคอเตอร์ ให้เป็นไปตามหลักเกณฑ์ตามข้อ ๕ ในกรณีที่หลักเกณฑ์ตามข้อ ๕

ประกาศณ วันที่ ๑ มิถุนายน พ.ศ. ๒๕๖๑

(นายจุฑา สุขมาพบ)
ผู้อำนวยการสานักงานการบินพลเรือนแห่งประเทศไทย
Helicopter Operations Requirements

Issue 01 Revision 00, 1 June 2018.
TABLE OF CONTENTS

Paragraph

Definitions

CHAPTER 1 GENERAL
1.1 Compliance with laws, Regulations and Procedures
1.2 Reserved
1.3 Safety Management
1.4 Dangerous Goods

CHAPTER 2 FLIGHT OPERATIONS
2.1 Operating Facilities
2.2 Operational Certification and Supervision
2.3 Flight Preparation
2.4 In-Flight Procedures
2.5 Duties of Pilot -In-Command
2.6 Duties of Flight Operations Officer / Flight Dispatcher
2.7 Carry-on baggage
2.8 Phycioactive Substance
2.9 Operation Over Bangkok

CHAPTER 3 HELICOPTER PERFORMANCE OPERATING LIMITATIONS
3.1 General
3.2 Helicopter Certified in accordance with Part IV of Annex 8
3.3 Obstacle Data

CHAPTER 4 HELICOPTER INSTRUMENTS, EQUIPMENTS AND FLIGHT DOCUMENTS
4.1 General
4.2 All Helicopters on All Flights
4.3 Flight Recorders
4.4 Instruments and Equipment for Flights Operated Under VFR and IFR - By Day and Night
4.5 All helicopters on flight over water
4.6 All Helicopter on flight over designated land areas
4.7 Emergency Locator Transmitter (ELT)
4.8 Automatically deployable emergency locator transmitter
4.9 All helicopter on high altitude flights
4.10 All helicopter in icing conditions
4.11 Helicopter when carrying passenger - significant-weather detection
4.12 All helicopter required to comply with the noise certification standards in Annex 16, Volume I
4.13 Helicopters carrying passengers – Cabin crew seats
4.14 Helicopter required to be equipped with a pressure-altitude reporting transponder
4.15 Microphones
4.16 Vibration Health Monitoring (VHM)
4.17 Helicopters equipped with Automatic Landing Systems, A Head-Up Display (HUD) or equivalent displays, Enhanced Vision System (EVS), Synthetic Vision Systems (SVS) and/or Combined Vision Systems (CVS)
4.18 Helicopter Terrain Awareness Warning System (HTAWS)
4.19 Electronic Flight Bags (EFBs)
4.20 Public Address (PA) system

CHAPTER 5 HELICOPTER COMMUNICATION, NAVIGATION AND SURVEILLANCE EQUIPMENT
5.1 Communication Equipment
5.2 Navigation Equipment
5.3 Surveillance Equipment
5.4 Equipment Installation
CHAPTER 6 HELICOPTER MAINTENANCE

6.1 Operator’s Maintenance Responsibilities
6.2 General Maintenance Manual
6.3 Maintenance Programe
6.4 Maintenance Records
6.5 Continuing Airworthiness Information
6.6 Modification and Repairs
6.7 Maintenance Release
6.8 Records

CHAPTER 7 HELICOPTER FLIGHT CREW

7.1 Composition of the Flight Crew
7.2 Flight Crew Member Emergency Duties
7.3 Flight Crew Member Training Procramme
7.4 Qualifications
7.5 Flight Crew Equipment
7.6 Flight Time, Flight Duty Periods and Rest Periods

CHAPTER 8 FLIGHT OPERATIONS OFFICER / FLIGHT DISPATCHER

CHAPTER 9 MANUALS, LOGS AND RECORDS

9.1 Flight Manual
9.2 Reserved
9.3 Reserved
9.4 Journey Log Book
9.5 Records of emergency and Survival Equipment Carried
9.6 Reserved
CHAPTER 10 CABIN CREW
10.1 Assignment of Emergency Duties
10.2 Protection of Cabin Crew During Flight
10.3 Training

CHAPTER 11 SECURITY
11.1 Helicopter Search Procedure Checklist
11.2 Training Programmes
11.3 Reporting Acts of Unlawful Interference
11.4 Security Manual

APPENDICS
APPENDIX A — Inspections of Flight Recorder Systems
APPENDIX B — Medical Supplies
APPENDIX C — Flight Crew Member Training Programme-Helicopter
DEFINITIONS & ABBREVIATIONS

Definitions

In this requirement, unless the context otherwise requires -

Acts of unlawful interference means acts or attempted acts such as to jeopardise the safety of civil aviation and air transport, i.e.

(a) unlawful seizure of aircraft in flight,

(b) unlawful seizure of aircraft on the ground,

(c) hostage-taking on board an aircraft or on aerodromes,

(d) forcible intrusion on board an aircraft, at an airport or on the premises of an aeronautical facility,

(e) introduction on board an aircraft or at an airport of a weapon or hazardous device or material intended for criminal purposes,

(f) communication of false information as to jeopardise the safety of an aircraft in flight or on the ground, of passengers, crew, ground personnel or the general public, at an airport or on the premises of a civil aviation facility.

Aerodrome. A defined area on land or water (including any buildings, installations and equipment) intended to be used either wholly or in part for the arrival, departure and surface movement of aircraft.

Aircraft. Any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth’s surface.

Aircraft operating manual. A manual, acceptable to the State of the Operator, containing normal, abnormal and emergency procedures, checklists, limitations, performance information, details of the aircraft systems and other material relevant to the operation of the aircraft.

Note.— The aircraft operating manual is part of the operations manual.

Air operator certificate (AOC). A certificate authorizing an operator to carry out specified commercial air transport operations.

Air traffic service (ATS). A generic term meaning variously, flight information service, alerting service, air traffic advisory service, air traffic control service (area control service, approach control service or aerodrome control service).

Airworthy. The status of an aircraft, engine, propeller or part when it conforms to its approved design and is in a condition for safe operation.
Alternate heliport. A heliport to which a helicopter may proceed when it becomes either impossible or inadvisable to proceed to or to land at the heliport of intended landing where the necessary services and facilities are available, where aircraft performance requirements can be met and which is operational at the expected time of use. Alternate heliports include the following:

Take-off alternate. An alternate heliport at which a helicopter would be able to land should this become necessary shortly after take-off and it is not possible to use the heliport of departure.

En-route alternate. An alternate heliport at which a helicopter would be able to land in the event that a diversion becomes necessary while en route.

Destination alternate. An alternate heliport at which a helicopter would be able to land should it become either impossible or inadvisable to land at the heliport of intended landing.

Note.—The heliport from which a flight departs may be an en-route or a destination alternate heliport for that flight.

Approach and landing phase — helicopters. That part of the flight from 300 m (1 000 ft) above the elevation of the FATO, if the flight is planned to exceed this height, or from the commencement of the descent in the other cases, to landing or to the balked landing point.

Area navigation (RNAV). A method of navigation which permits aircraft operation on any desired flight path within the coverage of ground- or space-based navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

Note.—Area navigation includes performance-based navigation as well as other operations that do not meet the definition of performance-based navigation.

Cabin crew member. A crew member who performs, in the interest of safety of passengers, duties assigned by the operator or the pilot-in-command of the aircraft, but who shall not act as a flight crew member.

Combined vision system (CVS). A system to display images from a combination of an enhanced vision system (EVS) and a synthetic vision system (SVS).

Commercial air transport operation. An aircraft operation involving the transport of passengers, cargo or mail for remuneration or hire.

Configuration deviation list (CDL). A list established by the organization responsible for the type design with the approval of the State of Design which identifies any external parts of an aircraft type which may be missing at the commencement of a flight, and which contains, where necessary, any information on associated operating limitations and performance correction.
Congested area. In relation to a city, town or settlement, any area which is substantially used for residential, commercial or recreational purposes.

Congested hostile environment. A hostile environment within a congested area.

Continuing airworthiness. The set of processes by which an aircraft, engine, rotor or part complies with the applicable airworthiness requirements and remains in a condition for safe operation throughout its operating life.

Continuous descent final approach (CDFA). A technique, consistent with stabilized approach procedures, for flying the final approach segment of a non-precision instrument approach procedure as a continuous descent, without level-off, from an altitude/height at or above the final approach fix altitude/height to a point approximately 15 m (50 ft) above the landing runway threshold or the point where the flare manoeuvre should begin for the type of aircraft flown.

Crew member. A person assigned by an operator to duty on an aircraft during a flight duty period.

Dangerous goods. Articles or substances which are capable of posing a risk to health, safety, property or the environment and which are shown in the list of dangerous goods in the Technical Instructions or which are classified according to those Instructions.

Note.— Dangerous goods are classified in Annex 18, Chapter 3.

Decision altitude (DA) or decision height (DH). A specified altitude or height in a three-dimensional (3D) instrument approach operation at which a missed approach must be initiated if the required visual reference to continue the approach has not been established.

Note 1.— Decision altitude (DA) is referenced to mean sea level and decision height (DH) is referenced to the threshold elevation.

Note 2.— The required visual reference means that section of the visual aids or of the approach area which should have been in view for sufficient time for the pilot to have made an assessment of the aircraft position and rate of change of position, in relation to the desired flight path. In Category III operations with a decision height the required visual reference is that specified for the particular procedure and operation.

Note 3.— For convenience where both expressions are used they may be written in the form “decision altitude/height” and abbreviated “DA/H”.

Defined point after take-off (DPATO). The point, within the take-off and initial climb phase, before which the helicopter’s ability to continue the flight safely, with one engine inoperative, is not assured and a forced landing may be required.

Note.— Defined points apply to helicopters operating in performance Class 2 only.

Defined point before landing (DPBL). The point, within the approach and landing phase, after which the helicopter’s ability to continue the flight safely, with one engine inoperative, is not assured and a forced landing may be required.

Note.— Defined points apply to helicopters operating in performance Class 2 only.
Electronic flight bag (EFB). An electronic information system, comprised of equipment and applications for flight crew, which allows for the storing, updating, displaying and processing of EFB functions to support flight operations or duties.

Elevated heliport. A heliport located on a raised structure on land.

Emergency locator transmitter (ELT). A generic term describing equipment which broadcast distinctive signals on designated frequencies and, depending on application, may be automatically activated by impact or be manually activated. An ELT may be any of the following:

- **Automatic fixed ELT (ELT(AF))**. An automatically activated ELT which is permanently attached to an aircraft.

- **Automatic portable ELT (ELT(AP))**. An automatically activated ELT which is rigidly attached to an aircraft but readily removable from the aircraft.

- **Automatic deployable ELT (ELT(AD))**. An ELT which is rigidly attached to an aircraft and which is automatically deployed and activated by impact, and, in some cases, also by hydrostatic sensors. Manual deployment is also provided.

- **Survival ELT (ELT(S))**. An ELT which is removable from an aircraft, stowed so as to facilitate its ready use in an emergency, and manually activated by survivors.

Engine. A unit used or intended to be used for aircraft propulsion. It consists of at least those components and equipment necessary for functioning and control but excludes the propeller/rotors (if applicable).

Enhanced vision system (EVS). A system to display electronic real-time images of the external scene achieved through the use of image sensors.

Note. — EVS does not include night vision imaging systems (NVIS).

En-route phase. That part of the flight from the end of the take-off and initial climb phase to the commencement of the approach and landing phase.

Note. — Where adequate obstacle clearance cannot be guaranteed visually, flights must be planned to ensure that obstacles can be cleared by an appropriate margin. In the event of failure of the critical engine, operators may need to adopt alternative procedures.

Final approach and take-off area (FATO). A defined area over which the final phase of the approach manoeuvre to hover or landing is completed and from which the take-off manoeuvre is commenced. Where the FATO is to be used by helicopters operating in performance Class 1, the defined area includes the rejected take-off area available.
Final approach segment (FAS). That segment of an instrument approach procedure in which alignment and descent for landing are accomplished.

Flight crew member. A licensed crew member charged with duties essential to the operation of an aircraft during a flight duty period.

Flight duty period. The total time from the moment a flight crew member commences duty, immediately subsequent to a rest period and prior to making a flight or a series of flights, to the moment the flight crew member is relieved of all duties having completed such flight or series of flights.

Flight manual. A manual, associated with the certificate of airworthiness, containing limitations within which the aircraft is to be considered airworthy, and instructions and information necessary to the flight crew members for the safe operation of the aircraft.

Flight operations officer/flight dispatcher. A person designated by the operator to engage in the control and supervision of flight operations, whether licensed or not, suitably qualified in accordance with Annex 1, who supports, briefs and/or assists the pilot-in-command in the safe conduct of the flight.

Flight plan. Specified information provided to air traffic services units, relative to an intended flight or portion of a flight of an aircraft.

Flight recorder. Any type of recorder installed in the aircraft for the purpose of complementing accident/incident investigation.

Automatic deployable flight recorder (ADFR). A combination flight recorder installed on the aircraft which is capable of automatically deploying from the aircraft.

Flight safety documents system. A set of interrelated documentation established by the operator, compiling and organizing information necessary for flight and ground operations, and comprising, as a minimum, the operations manual and the operator’s maintenance control manual.

Flight simulation training device. Any one of the following three types of apparatus in which flight conditions are simulated on the ground:

A flight simulator, which provides an accurate representation of the flight deck of a particular aircraft type to the extent that the mechanical, electrical, electronic, etc. aircraft systems control functions, the normal environment of flight crew members, and the performance and flight characteristics of that type of aircraft are realistically simulated;

A flight procedures trainer, which provides a realistic flight deck environment, and which simulates instrument responses, simple control functions of mechanical, electrical, electronic, etc. aircraft systems, and the performance and flight characteristics of aircraft of a particular class;
A basic instrument flight trainer, which is equipped with appropriate instruments, and which simulates the flight deck environment of an aircraft in flight in instrument flight conditions.

Flight time — helicopters. The total time from the moment a helicopter’s rotor blades start turning until the moment the helicopter finally comes to rest at the end of the flight, and the rotor blades are stopped.

Note 1.— The State may provide guidance in those cases where the definition of flight time does not describe or permit normal practices. Examples are: crew change without stopping the rotors; and rotors running engine wash procedure following a flight. In any case, the time when rotors are running between sectors of a flight is included within the calculation of flight time.

Note 2.— This definition is intended only for the purpose of flight and duty time regulations.

General aviation operation. An aircraft operation other than a commercial air transport operation or an aerial work operation.

Ground handling. Services necessary for an aircraft’s arrival at, and departure from, an airport, other than air traffic services.

Head-up display (HUD). A display system that presents flight information into the pilot’s forward external field of view.

Helicopter. A heavier-than-air aircraft supported in flight chiefly by the reactions of the air on one or more power-driven rotors on substantially vertical axes.

Note.— Some States use the term “rotorcraft” as an alternative to “helicopter”.

Helideck. A heliport located on a floating or fixed offshore structure.

Heliport. An aerodrome or a defined area on a structure intended to be used wholly or in part for the arrival, departure and surface movement of helicopters.

Note 1.— Throughout this Part, when the term “heliport” is used, it is intended that the term also applies to aerodromes primarily meant for the use of aeroplanes.

Note 2.— Helicopters may be operated to and from areas other than heliports.

Heliport operating minima. The limits of usability of a heliport for:

(a) take-off, expressed in terms of runway visual range and/or visibility and, if necessary, cloud conditions;

(b) landing in 2D instrument approach operations, expressed in terms of visibility and/or runway visual range, minimum descent altitude/height (MDA/H) and, if necessary, cloud conditions; and
(c) landing in 3D instrument approach operations, expressed in terms of visibility and/or runway visual range and decision altitude/height (DA/H) as appropriate to the type and/or category of the operation.

Hostile environment. An environment in which:

(a) a safe forced landing cannot be accomplished because the surface and surrounding environment are inadequate; or

(b) the helicopter occupants cannot be adequately protected from the elements; or

(c) search and rescue response/capability is not provided consistent with anticipated exposure; or

(d) there is an unacceptable risk of endangering persons or property on the ground.

Human Factors principles. Principles which apply to aeronautical design, certification, training, operations and maintenance and which seek safe interface between the human and other system components by proper consideration to human performance.

Human performance. Human capabilities and limitations which have an impact on the safety and efficiency of aeronautical operations.

Instrument approach operations. An approach and landing using instruments for navigation guidance based on an instrument approach procedure. There are two methods for executing instrument approach operations:

(a) a two-dimensional (2D) instrument approach operation, using lateral navigation guidance only; and

(b) a three-dimensional (3D) instrument approach operation, using both lateral and vertical navigation guidance.

Note. — Lateral and vertical navigation guidance refers to the guidance provided either by:

a) a ground-based radio navigation aid; or

b) computer-generated navigation data from ground-based, space-based, self-contained navigation aids or a combination of these.

Instrument approach procedure (IAP). A series of predetermined manoeuvres by reference to flight instruments with specified protection from obstacles from the initial approach fix, or where applicable, from the beginning of a defined arrival route to a point from which a landing can be completed and thereafter, if a landing is not completed, to a position at which holding or en-route obstacle clearance criteria apply. Instrument approach procedures are classified as follows:
Non-precision approach (NPA) procedure. An instrument approach procedure designed for 2D instrument approach operations Type A.

Note. — Non-precision approach procedures may be flown using a continuous descent final approach (CDFA) technique. CDFA with advisory VNAV guidance calculated by on-board equipment (see PANS-OPS (Doc 8168), Volume I, Part I, Section 4, Chapter 1, 1.8.1) are considered 3D instrument approach operations. CDFA with manual calculation of the required rate of descent are considered 2D instrument approach operations. For more information on CDFA, refer to PANS-OPS (Doc 8168), Volume I, Part I, Section 4, Chapter 1, 1.7 and 1.8.

Approach procedure with vertical guidance (APV). A performance-based navigation (PBN) instrument approach procedure designed for 3D instrument approach operations Type A.

Precision approach (PA) procedure. An instrument approach procedure based on navigation systems (ILS, MLS, GLS and SBAS CAT I) designed for 3D instrument approach operations Type A or B.

Note. — Refer to Chapter 2, 2.2.8.3, for instrument approach operation types.

Instrument meteorological conditions (IMC). Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling*, less than the minima specified for visual meteorological conditions.

Note. — The specified minima for visual meteorological conditions are contained in AOCR Appendix T.

Integrated survival suit. A survival suit which meets the combined requirements of the survival suit and life jacket.

Landing decision point (LDP). The point used in determining landing performance from which, an engine failure occurring at this point, the landing may be safely continued or a balked landing initiated.

Note. — LDP applies only to helicopters operating in performance Class 1.

Maintenance. The performance of tasks required to ensure the continuing airworthiness of an aircraft, including any one or combination of overhaul, inspection, replacement, defect rectification, and the embodiment of a modification or repair.

Maintenance organization’s procedures manual. A document endorsed by the head of the maintenance organization which details the maintenance organization’s structure and management responsibilities, scope of work, description of facilities, maintenance procedures and quality assurance or inspection systems.

Maintenance programme. A document which describes the specific scheduled maintenance tasks and their frequency of completion and related procedures, such as a reliability programme, necessary for the safe operation of those aircraft to which it applies.
Maintenance release. A document which contains a certification confirming that the maintenance work to which it relates has been completed in a satisfactory manner, either in accordance with the approved data and the procedures described in the maintenance organization’s procedures manual or under an equivalent system.

Master minimum equipment list (MMEL). A list established for a particular aircraft type by the organization responsible for the type design with the approval of the State of Design containing items, one or more of which is permitted to be unserviceable at the commencement of a flight. The MMEL may be associated with special operating conditions, limitations or procedures.

Maximum mass. Maximum certificated take-off mass.

Minimum descent altitude (MDA) or minimum descent height (MDH). A specified altitude or height in a 2D instrument approach operation or circling approach operation below which descent must not be made without the required visual reference.

Note 1. — Minimum descent altitude (MDA) is referenced to mean sea level and minimum descent height (MDH) is referenced to the aerodrome elevation or to the threshold elevation if that is more than 2 m (7 ft) below the aerodrome elevation. A minimum descent height for a circling approach is referenced to the aerodrome elevation.

Note 2. — The required visual reference means that section of the visual aids or of the approach area which should have been in view for sufficient time for the pilot to have made an assessment of the aircraft position and rate of change of position, in relation to the desired flight path. In the case of a circling approach the required visual reference is the runway environment.

Note 3. — For convenience when both expressions are used they may be written in the form “minimum descent altitude/height” and abbreviated “MDA/H”.

Minimum equipment list (MEL). A list which provides for the operation of aircraft, subject to specified conditions, with particular equipment inoperative, prepared by an operator in conformity with, or more restrictive than, the MMEL established for the aircraft type.

Navigation specification. A set of aircraft and flight crew requirements needed to support performance-based navigation operations within a defined airspace. There are two kinds of navigation specifications:

Required navigation performance (RNP) specification. A navigation specification based on area navigation that includes the requirement for performance monitoring and alerting, designated by the prefix RNP, e.g. RNP 4, RNP APCH.

Area navigation (RNAV) specification. A navigation specification based on area navigation that does not include the requirement for performance monitoring and alerting, designated by the prefix RNAV, e.g. RNAV 5, RNAV 1.

Note 2.— The term RNP, previously defined as “a statement of the navigation performance necessary for operation within a defined airspace”, has been removed from this Annex as the concept of RNP has been overtaken by the concept of PBN. The term RNP in this Annex is now solely used in the context of navigation specifications that require performance monitoring and alerting, e.g. RNP 4 refers to the aircraft and operating requirements, including a 4 NM lateral performance with on-board performance monitoring and alerting that are detailed in Doc 9613.

Night. The hours between the end of evening civil twilight and the beginning of morning civil twilight or such other period between sunset and sunrise, as may be prescribed by the appropriate authority.

Note.— Civil twilight ends in the evening when the centre of the sun’s disc is 6 degrees below the horizon and begins in the morning when the centre of the sun’s disc is 6 degrees below the horizon.

Non-congested hostile environment. A hostile environment outside a congested area.

Non-hostile environment. An environment in which:

(a) a safe forced landing can be accomplished because the surface and surrounding environment are adequate;

(b) the helicopter occupants can be adequately protected from the elements;

(c) search and rescue response/capability is provided consistent with anticipated exposure; and

(d) the assessed risk of endangering persons or property on the ground is acceptable.

Note.— Those parts of a congested area satisfying the above requirements are considered non-hostile.

Obstacle clearance altitude (OCA) or obstacle clearance height (OCH). The lowest altitude or the lowest height above the elevation of the relevant runway threshold or the aerodrome elevation as applicable, used in establishing compliance with appropriate obstacle clearance criteria.

Note 1.— Obstacle clearance altitude is referenced to mean sea level and obstacle clearance height is referenced to the threshold elevation or in the case of non-precision approach procedures to the aerodrome elevation or the threshold elevation if that is more than 2 m (7 ft) below the aerodrome elevation. An obstacle clearance height for a circling approach procedure is referenced to the aerodrome elevation.
Note 2.— For convenience when both expressions are used they may be written in the form “obstacle clearance altitude/height” and abbreviated “OCA/H”.

Offshore operations. Operations which routinely have a substantial proportion of the flight conducted over sea areas to or from offshore locations. Such operations include, but are not limited to, support of offshore oil, gas and mineral exploitation and sea-pilot transfer.

Operation. An activity or group of activities which are subject to the same or similar hazards and which require a set of equipment to be specified, or the achievement and maintenance of a set of pilot competencies, to eliminate or mitigate the risk of such hazards.

Note.— Such activities could include, but would not be limited to, offshore operations, helicopter operations or emergency medical service.

Operational control. The exercise of authority over the initiation, continuation, diversion or termination of a flight in the interest of the safety of the aircraft and the regularity and efficiency of the flight.

Operational flight plan. The operator’s plan for the safe conduct of the flight based on considerations of helicopter performance, other operating limitations and relevant expected conditions on the route to be followed and at the heliports concerned.

Operations in performance Class 1. Operations with performance such that, in the event of a critical engine failure, performance is available to enable the helicopter to safely continue the flight to an appropriate landing area, unless the failure occurs prior to reaching the take-off decision point (TDP) or after passing the landing decision point (LDP), in which cases the helicopter must be able to land within the rejected take-off or landing area.

Operations in performance Class 2. Operations with performance such that, in the event of critical engine failure, performance is available to enable the helicopter to safely continue the flight to an appropriate landing area, except when the failure occurs early during the take-off manoeuvre or late in the landing manoeuvre, in which cases a forced landing may be required.

Operations in performance Class 3. Operations with performance such that, in the event of an engine failure at any time during the flight, a forced landing will be required.

Operations manual. A manual containing procedures, instructions and guidance for use by operational personnel in the execution of their duties.

Operations specifications. The authorizations, conditions and limitations associated with the air operator certificate and subject to the conditions in the operations manual.

Operator. The person, organization or enterprise engaged in or offering to engage in an aircraft operation.

Operator’s maintenance control manual. A document which describes the operator’s procedures necessary to ensure that all scheduled and unscheduled maintenance is performed on the operator’s aircraft on time and in a controlled and satisfactory manner.
Performance-based communication (PBC). Communication based on performance specifications applied to the provision of air traffic services.

Note. — An RCP specification includes communication performance requirements that are allocated to system components in terms of the communication to be provided and associated transaction time, continuity, availability, integrity, safety and functionality needed for the proposed operation in the context of a particular airspace concept.

Performance-based navigation (PBN). Area navigation based on performance requirements for aircraft operating along an ATS route, on an instrument approach procedure or in a designated airspace.

Note. — Performance requirements are expressed in navigation specifications (RNAV specification, RNP specification) in terms of accuracy, integrity, continuity, availability and functionality needed for the proposed operation in the context of a particular airspace concept.

Performance-based surveillance (PBS). Surveillance based on performance specifications applied to the provision of air traffic services.

Note. — An RSP specification includes surveillance performance requirements that are allocated to system components in terms of the surveillance to be provided and associated data delivery time, continuity, availability, integrity, accuracy of the surveillance data, safety and functionality needed for the proposed operation in the context of a particular airspace concept.

Pilot-in-command. The pilot designated by the operator, or in the case of general aviation, the owner, as being in command and charged with the safe conduct of a flight.

Point of no return. The last possible geographic point at which an aircraft can proceed to the destination aerodrome as well as to an available en-route alternate aerodrome for a given flight.

Psychoactive substances. Alcohol, opioids, cannabinoids, sedatives and hypnotics, cocaine, other psychostimulants, hallucinogens, and volatile solvents, whereas coffee and tobacco are excluded.

Repair. The restoration of an aeronautical product to an airworthy condition to ensure that the aircraft continues to comply with the design aspects of the appropriate airworthiness requirements used for the issuance of the type certificate for the respective aircraft type, after it has been damaged or subjected to wear.

Required communication performance (RCP) specification. A set of requirements for air traffic service provision and associated ground equipment, aircraft capability, and operations needed to support performance-based communication.

Required surveillance performance (RSP) specification. A set of requirements for air traffic service provision and associated ground equipment, aircraft capability, and operations needed to support performance-based surveillance.
Runway visual range (RVR). The range over which the pilot of an aircraft on the centre line of a runway can see the runway surface markings or the lights delineating the runway or identifying its centre line.

Safe forced landing. Unavoidable landing or ditching with a reasonable expectancy of no injuries to persons in the aircraft or on the surface.

Safety management system (SMS). A systematic approach to managing safety, including the necessary organizational structures, accountability, responsibilities, policies and procedures.

Series of flights. Series of flights are consecutive flights that:
(a) begin and end within a period of 24 hours; and
(b) are all conducted by the same pilot-in-command.

State of Registry. The State on whose register the aircraft is entered.

Note.— In the case of the registration of aircraft of an international operating agency on other than a national basis, the States constituting the agency are jointly and severally bound to assume the obligations which, under the Chicago Convention, attach to a State of Registry. See, in this regard, the Council Resolution of 14 December 1967 on Nationality and Registration of Aircraft Operated by International Operating Agencies which can be found in Policy and Guidance Material on the Economic Regulation of International Air Transport (Doc 9587).

State of the Aerodrome. The State in whose territory the aerodrome is located.

Note.— State of the Aerodrome includes heliports and landing locations.

State of the Operator. The State in which the operator’s principal place of business is located or, if there is no such place of business, the operator’s permanent residence.

Synthetic vision system (SVS). A system to display data-derived synthetic images of the external scene from the perspective of the flight deck.

Take-off and initial climb phase. That part of the flight from the start of take-off to 300 m (1 000 ft) above the elevation of the FATO, if the flight is planned to exceed this height, or to the end of the climb in the other cases.

Take-off decision point (TDP). The point used in determining take-off performance from which, an engine failure occurring at this point, either a rejected take-off may be made or a take-off safely continued.

Note.— TDP applies only to helicopters operating in performance Class 1.

Visual meteorological conditions (VMC). Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling, * equal to or better than specified minima.

Note.— The specified minima are contained in AOCR, Appendix T.
VTOSS. The minimum speed at which climb shall be achieved with the critical engine inoperative, the remaining engines operating within approved operating limits.

Note.— The speed referred to above may be measured by instrument indications or achieved by a procedure specified in the flight manual.
Abbreviations

ACAS Airborne collision avoidance systems
ADRS Aircraft data recording system
ADS-C Automatic dependent surveillance — contract
AFCS Automatic flight control system
AIR Airborne image recorder
AIRS Airborne image recording system
AOC Air operator certificate
AOCR Air Operator Certificate
Requirements
APCH Approach
AR Authorization required
ATC Air traffic control
ATM Air traffic management
ATN Aeronautical telecommunication network
ATS Air traffic services
CAAT The Civil Aviation Authority of Thailand
CARS Cockpit audio recording system
CAT I Category I
CAT II Category II
CAT III Category III
CAT IIIA Category IIIA
CAT IIIB Category IIIB
CAT IIIC Category IIIC
CFIT Controlled flight into terrain
cm Centimetre
CPDLC Controller-pilot data link communications
CVR Cockpit voice recorder
CVS Combined vision system
DA Decision altitude
DA/H Decision altitude/height
DH Decision height
DLR Data link recorder
DLRS Data link recording system
DME Distance measuring equipment
EFB Electronic flight bag
EFIS Electronic flight instrument system
EGT Exhaust gas temperature
EICAS Engine indication and crew alerting system
ELT Emergency locator transmitter
ELT(AD) Automatic deployable ELT
ELT(AF) Automatic fixed ELT
ELT(AP) Automatic portable ELT
ELT(S) Survival ELT
EPR Engine pressure ratio
EUROCAE European Organisation for Civil Aviation Equipment
EVS Enhanced vision system
FANS Future air navigation system
FATO Final approach and take-off area
FDR Flight data recorder
FM Frequency modulation
ft Foot
g Normal acceleration
hPa Hectopascal
HUD Head-up display
IFR Instrument flight rules
ILS Instrument landing system
IMC Instrument meteorological conditions
inHg Inch of mercury
kg Kilogram
km Kilometre
kN Kilonewton
kt Knot
LDAH Landing distance available
LDP Landing decision point
LDRH Landing distance required
LED Light emitting diode
m Metre
mb Millibar
MDA Minimum descent altitude
MDA/H Minimum descent altitude/height
MDH Minimum descent height
MEL Minimum equipment list
MHz Megahertz
MLS Microwave landing system
MMEL Master minimum equipment list
MOPS Minimum operational performance specification
N1 Low pressure compressor speed (two-stage compressor); fan speed (three-stage compressor)
NM Nautical mile
NVIS Night vision imaging systems
OCA Obstacle clearance altitude
OCA/H Obstacle clearance altitude/height
OCH Obstacle clearance height
PANS Procedures for Air Navigation Services
PBC Performance-based communication
PBN Performance-based navigation
PBS Performance-based surveillance
PNR Point of no return
psi Pound per square inch
R Rotor radius
RCP Required communication performance
RNAV Area navigation
RNP Required navigation performance
RSP Required surveillance performance
RTCA Radio Technical Commission for Aeronautics
RVR Runway visual range
SI International System of Units
SOP Standard operating procedure
SVS Synthetic vision system
T4 Engine exhaust gas temperature
TDP Take-off decision point
TIT Turbine inlet temperature
TLOF Touchdown and lift-off area
TODAH Take-off distance available
TODRH Take-off distance required
UTC Coordinated universal time
VFR Visual flight rules
VMC Visual meteorological conditions
VNAV Vertical navigation
VTOSS Take-off safety speed
Vy Best rate of climb speed
°C Degrees Celsius
% Per cent
CHAPTER 1 GENERAL

1.1 COMPLIANCE WITH LAWS, REGULATIONS AND PROCEDURES

1.1.1 The operator shall ensure that all employees when abroad know that they must comply with the laws, regulations and procedures of those States in which their operations are conducted.

1.1.2 The operator shall ensure that all pilots are familiar with the laws, regulations and procedures, pertinent to the performance of their duties, prescribed for the areas to be traversed, the heliports to be used and the air navigation facilities relating thereto. The operator shall ensure that other members of the flight crew are familiar with such of these regulations and procedures as are pertinent to the performance of their respective duties in the operation of the helicopter.

Note.— Information for pilots and flight operations personnel on flight procedure parameters and operational procedures is contained in PANS-OPS (Doc 8168), Volume I. Criteria for the construction of visual and instrument flight procedures are contained in PANS-OPS (Doc 8168), Volume II. Obstacle clearance criteria and procedures used in certain States may differ from PANS-OPS, and knowledge of these differences is important for safety reasons.

1.1.3 The operator or a designated representative shall have responsibility for operational control.

1.1.4 Responsibility for operational control shall be delegated only to the pilot-in-command and to a flight operations officer/flight dispatcher if the operator’s approved method of control and supervision of flight operations requires the use of flight operations officer/flight dispatcher personnel.

1.1.5 If an emergency situation which endangers the safety of the helicopter or persons becomes known first to the flight operations officer/flight dispatcher, action by that person in accordance with 2.6.1 shall include, where necessary, notification to the appropriate authorities of the nature of the situation without delay, and requests for assistance if required.

1.1.6 If an emergency situation which endangers the safety of the helicopter or persons necessitates the taking of action which involves a violation of local regulations or procedures, the pilot-in-command shall notify the appropriate local authority without delay. If required by the State in which the incident occurs, the pilot-in-command shall submit a report on any such violation to the appropriate authority of such State; in that event, the pilot-in-command shall also submit a copy of it to the State of the Operator. Such reports shall be submitted as soon as possible and normally within ten days.

1.1.7 Operators shall ensure that pilots-in-command have available on board the helicopter all the essential information concerning the search and rescue services in the area over which the helicopter will be flown.
1.1.8 Operators shall ensure that flight crew members demonstrate the ability to speak and understand the language used for radiotelephony communications as specified in Announcement of The Civil Aviation Authority of Thailand on Language Proficiency Rating.

1.2 Reserved

1.3 SAFETY MANAGEMENT

1.3.1 The operator of a helicopter of a certified take-off mass in excess of 7,000 kg or having a passenger seating configuration of more than 9 and fitted with a flight data recorder should establish and maintain a flight data analysis programme as part of its safety management system.

1.3.2 A flight data analysis programme shall be non-punitive and contain adequate safeguards to protect the source(s) of the data.

1.3.3 The operator shall establish a safety management system in order to achieve an acceptable level of safety by the CAAT.

1.3.4 The operator shall implement an acceptable safety management system that, as a minimum:

(a) Identifies safety hazards.

(b) ensures the implementation of remedial action necessary to maintain acceptable level of safety.

(c) provides for continuous monitoring and regular assessment of the safety performance.

(d) aims at a continuous improvement of the overall performance of the safety management system.

1.3.5 A safety management system shall clearly define lines of safety accountability throughout the operator’s organization, including a direct accountability for safety on the part of senior management.

1.3.6 The operator shall establish a flight safety documents system, for the use and guidance of operational personnel as part of its safety management system.

1.3.7 The safety management system shall be according to the CAAT Guidance Material for Safety Management Systems and shall address the following:

(a) Safety policy and objectives

1) Management commitment and responsibility
2) Safety accountabilities and responsibility
3) Appointment of key safety personnel
4) Emergency response planning
5) Documentation and record

(b) **Safety risk management**
1) Hazard identification processes
2) Risk assessment and mitigation processes

(c) **Safety assurance**
1) Safety performance monitoring and measurement
2) Management of change
3) Continuous improvement and audit
4) Safety promotion
5) Training and education
6) Safety communication

1.4 **DANGEROUS GOODS**

1.4.1 The operator shall comply with AOCR with respect to control of and carriage of Dangerous Goods.
CHAPTER 2 FLIGHT OPERATIONS

2.1 OPERATING FACILITIES

2.2.1 The operator shall ensure that a flight will not be commenced unless it has been ascertained by every reasonable means available that the ground and/or water facilities available and directly required on such flight, for the safe operation of the helicopter and the protection of the passengers, are adequate for the type of operation under which the flight is to be conducted and are adequately operated for this purpose.

2.2.2 The operator shall ensure that any inadequacy of facilities observed in the course of operations is reported to the authority responsible for them, without undue delay. The required facilities which are published in Aeronautical Information Publication: AIP or Notice to Airmen: NOTAM shall be available for operations during the publish time in any weather condition.

2.2 OPERATIONAL CERTIFICATION AND SUPERVISION

2.2.1 Air Operator Certificate;

2.2.1.1 An operator shall not engage in commercial air transport operations unless in possession of a valid Air Operator Certificate issued in accordance with AOCR, Chapter 1.

2.2.1.2 The operator shall conduct commercial air transport operations in accordance with the operations specifications issued by the CAAT.

2.2.1.3 The issue of the Air Operator certificate by the CAAT is dependent on the organisation demonstrating an adequate organisation, method of control and supervision of flight operations, training programme as well as ground handling and maintenance arrangements consistent with the nature and extent of the operations specified.

2.2.1.4 The continued validity of an air operator certificate shall depend upon the operator maintaining the requirements of 2.2.1.3 under the supervision of the CAAT.

2.2.1.5 The air operator certificate and operations specifications associated with the air operator certificate shall contain the informations in accordance with AOCR, Appendix A.

2.2.2 (Reserved)

2.2.3 Operations Manual

2.2.3.1 The operator shall make available, for the use and guidance of operations personnel concerned, an operation manual constructed using the guidance contained in AOCR Chapter 2 and Appendix K2.

The operations manual shall be amended or revised as is necessary to ensure that the information contained therein is kept up to date. All such amendments or revisions shall be notified to all personnel that are required to use this manual.
2.2.3.2 The Operator shall provide a copy of the operations manual together with all amendments and/or revisions, for review and acceptance and, where required, to the CAAT for approval.

2.2.3.3 The operator shall incorporate in the operations manual such mandatory material as the CAAT may require.

2.2.4 Operating Instructions – General

2.2.4.1 An operator shall ensure that all operations personnel are properly instructed in their particular duties and responsibilities and the relationship of such duties to the operation as a whole.

2.2.4.2 A helicopter rotor shall not be turned under power, for the purpose of flight, without a qualified pilot at the controls. The operator shall provide appropriately specific training and procedures to be followed for all personnel, other than qualified pilots, who are likely to carry out the turning of a rotor under power for purposes other than flight.

2.2.4.3 The operator shall issue operating instructions and provide information on helicopter climb performance with all engines operating to enable the pilot-in-command to determine the climb gradient that can be achieved during the take-off and initial climb phase for the existing take-off conditions and intended take-off technique. This information shall be based on the helicopter manufacturer’s data and shall be included in the operations manual.

2.2.5 In-Flight Simulation of Emergency Situations

An operator shall ensure that when passengers or cargo are being carried, no emergency or abnormal situations shall be simulated.

2.2.6 Checklists

The operator shall provide the checklists to be used by flight crews prior to, during and after all phases of operations, and in emergency, to ensure compliance with the operating procedures contained in the aircraft operating manual, the flight manual or other documents associated with the certificate of airworthiness and otherwise in the operations manual. The design and utilization of checklists shall observe Human Factors principles. The checklists constructed using the guidance contained in AOCR.

2.2.7 Minimum Flight Altitudes (Operations Under IFR)

2.2.7.1 The operator shall establish minimum flight altitudes for those routes flown for which minimum flight altitudes have been established by the State flown over or the Kingdom of Thailand, provided that they are not less than those established by that State, unless specifically approved.

2.2.7.2 The operator shall specify the method by which it is intended to determine minimum flight altitudes for operations conducted over routes for which minimum flight altitudes have not been established by the State flown over, or the Kingdom of Thailand, and shall include this method in the operations manual. The minimum flight
altitudes determined in accordance with the above method shall not be lower than specified in Regulation on Civil Aviation Board (RCAB) No. 94 on Rules of The Air.

2.2.8 **Heliport or Landing Location Operating Minima**

2.2.8.1 The operator shall establish operating minima for each heliport or landing location to be used in operations and the method of determination of such minima shall be approved by the CAAT. Such minima shall not be lower than any that may be established for such heliports or landing locations by the responsible authority or agency for the state in which the heliport or landing location is located, except when specifically approved by that State. Refer to AOCR Appendix U.

2.2.8.2 Operational credit(s) for operations with helicopters equipped with automatic landing systems, a HUD or equivalent displays, EVS, SVS or CVS shall be approved by the CAAT. Such approvals shall not affect the classification of the instrument approach procedure.

2.2.8.3 The operator shall establish the heliport or landing location operating minima which will apply to any particular operation and shall take full account of:

(a) the type, performance and handling characteristics of the helicopter;

(b) the composition of the flight crew, their competence and experience;

(c) the physical characteristics of the heliport, and direction of approach;

(d) available the adequacy and performance of the available visual and non-visual ground aids;

(e) the equipment on the helicopter for the purpose of navigation and/or control of the flight path during the approach to landing and the missed approach;

(f) the obstacles in the approach and missed approach areas and the obstacle clearance altitude/height for the instrument approach procedures;

(g) the means used to determine and report meteorological conditions; and

(h) the obstacles in the climb-out areas and necessary clearance margins.

2.2.8.4 An Operator shall classify instrument approach operations based on classified based on the designed lowest operating minima below which an approach operation shall only be continued with the required visual reference as follows:

(a) Type A: a minimum descent height or decision height at or above 75 m (250 ft); and

(b) Type B: a decision height below 75 m (250 ft). Type B instrument approach operations are categorized as:

1) **Category I (CAT I)**: a decision height not lower than 60 m (200 ft) and with either a visibility not less than 800m or a runway visual range not less than 550 m;
2) **Category II (CAT II):** a decision height lower than 60 m (200 ft), but not lower than 30 m (100 ft) and a runway visual range not less than 300 m;

3) **Category IIIA (CAT IIIA):** a decision height lower than 30 m (100 ft) or no decision height and a runway visual range not less than 175 m;

4) **Category IIIB (CAT IIIB):** a decision height lower than 15 m (50 ft), or no decision height and a runway visual range less than 175 m but not less than 50 m; and

5) **Category IIIIC (CAT IIIIC):** no decision height and no runway visual range limitations.

2.2.8.5 Category II and Category III instrument approach and landing operations shall not be authorized unless RVR information is provided.

2.2.8.6 For instrument approach operations, heliport or landing location operating minima below 800 m visibility shall not be authorized unless RVR information or an accurate measurement or observation of visibility is provided.

2.2.8.7 The operating minima for 2D instrument approach operations using instrument approach procedures shall be determined by establishing a minimum descent altitude (MDA) or minimum descent height (MDH), minimum visibility and, if necessary, cloud conditions.

2.2.8.8 The operating minima for 3D instrument approach operations using instrument approach procedures shall be determined by establishing a decision altitude (DA) or decision height (DH) and the minimum visibility or RVR.

2.8.8.9 For Take-off minima, Required RVR/Visibility, Non-Precision Approach, Precision approach-Category I Operations, Visual Flight Rules Operating Minima, Onshore Circling, Airborne Radar Approach (ARA), Helicopter equipped with automatic landing systems, HUD, EVS, SVS or CVS, the operator shall establish and maintain in accordance with AOCR Chapter 9.

2.2.9 **Fuel and Oil records**

2.2.9.1 The operator shall maintain fuel and oil records to enable the CAAT to ascertain that, for each flight, the requirements of 2.3.6 have been complied with.

2.2.9.2 Fuel and oil records of every flight shall be retained by the operator for a period at least 3 months.

2.2.10 **Crew**

2.2.10.1 Pilot in Command

For each flight, the operator shall designate one pilot to act as pilot-in-command.

2.2.10.2 Flight time, flight duty periods, rest periods
An operator shall formulate rules to limit flight time and flight duty periods and for the provision of adequate rest periods for all its crew members to ensure proper fatigue management was performed. These rules shall be in accordance with Announcement of the Civil Aviation Authority of Thailand on Flight Time and Flight Duty Period Limitation requirements and included in the operations manual.

2.2.10.3 If there is any necessity to deviate from the Announcement of the Civil Aviation Authority of Thailand on Flight Time and Flight Duty Period Limitation requirement, the operator shall determine the different operations procedure and demonstrate a level of safety which shall be acceptable to the CAAT.

2.2.10.4 The operator shall maintain current records of the flight time, flight duty periods and rest periods of all its crew members for a period of 15 months from the date of crew member’s duty.

2.2.11 Passengers

2.2.11.1 An operator shall ensure that passengers are made familiar with the location and use of:

(a) seat belts or harnesses, emergency exits,

(b) life jackets (if the carriage of life jackets is prescribed),

(c) oxygen dispensing equipment (if the provision of oxygen for the use of passengers is prescribed);

(d) and other emergency equipment provided for individual use, including passenger emergency briefing cards.

2.2.11.2 The operator shall ensure that the passengers are informed of the location and general manner of use of the principal emergency equipment carried for collective use.

2.2.11.3 In an emergency during flight, passengers shall be instructed in such emergency action as may be appropriate to the circumstances.

2.2.11.4 The operator shall ensure that, during take-off and landing and whenever considered necessary by reason of turbulence or any emergency occurring during flight, all passengers on board a helicopter shall be secured in them by means of the seat belts or harnesses provided.

2.2.12 Over-water flights

All helicopters on flights over water in a hostile environment in accordance with 4.5.1 shall be certificated for ditching. Sea state shall be an integral part of ditching information.

2.3 FLIGHT PREPARATION

2.3.1 A flight, or series of flights, shall not be commenced until flight preparation forms
have been completed certifying that the pilot-in-command is satisfied that:

(a) the helicopter is airworthy.

(b) the instruments and equipment prescribed in Chapter 4 of this requirement, for the particular type of operation to be undertaken, are installed and are sufficient for the flight.

(c) a maintenance release as prescribed in Chapter 6 of this requirement has been issued in respect of the helicopter.

(d) the mass of the helicopter and centre of gravity location are such that the flight can be conducted safely, taking into account the flight conditions expected.

(e) any load carried is properly distributed and safely secured.

(f) a check has been completed indicating that the operating limitations of Chapter 3 of this requirement can be complied with for the flight to be undertaken.

(g) the Standards of 2.3.3 of this requirement relating to operational flight planning have been complied with.

2.3.2 Completed flight preparation forms shall be kept by an operator for a period of at least 3 months.

Operational flight planning

2.3.3.1 An operational flight plan shall be completed for every intended flight or series of flights, and approved by the pilot-in-command, and flight operations officer if he/she completes the operational flight plan. It shall be lodged with the appropriate authority. The operator shall determine the most efficient means of lodging the operational flight plan.

2.3.3.2 The details of operational flight plans are in accordance with AOCR, Chapter 5, Para 11.3. The operations manual shall describe the content and use of the operational flight plan.

2.3.4 Alternate heliports

2.3.4.1 Take-off alternate heliport

(a) A take-off alternate heliport shall be selected and specified in the operational flight plan if the weather conditions at the heliport of departure are at or below the applicable heliport operating minima.

(b) For a heliport to be selected as a take-off alternate, the available information shall indicate that, at the estimated time of use, the conditions will be at or above the heliport operating minima for that operation.
2.3.4.2 Destination Alternate Heliport

(a) For a flight to be conducted in accordance with IFR, at least one destination alternate shall be specified in the operational flight plan and the flight plan, unless:

1) the duration of the flight and the meteorological conditions prevailing are such that there is reasonable certainty that, at the estimated time of arrival at the heliport of intended landing, and for a reasonable period before and after such time, the approach and landing may be made under visual meteorological conditions as prescribed by the CAAT; or

2) the heliport of intended landing is isolated and no suitable alternate is available. A point of no return (PNR) shall be determined.

(b) For a heliport to be selected as a destination alternate, the available information shall indicate that, at the estimated time of use, the conditions will be at or above the heliport operating minima for that operation.

(c) For a flight departing to a destination which is forecast to be below the heliport operating minima, two destination alternates shall be selected. The first destination alternate should be at or above the heliport operating minima for destination and the second at or above the heliport operating minima for alternate.

2.3.4.3 When an off-shore alternate heliport is specified, it shall be specified subject to the following:

(a) the offshore alternates shall be used only after a PNR. Prior to a PNR, onshore alternates shall be used.

(b) mechanical reliability of critical control systems and critical components shall be considered and taken into account when determining the suitability of the alternates.

(c) one engine inoperative performance capability shall be attainable prior to arrival at the alternate.

(d) to the extent possible, deck availability shall be guaranteed.

(e) weather information must be reliable and accurate.

2.3.4.4 Offshore alternates shall not be used when it is possible to carry enough fuel to have an onshore alternate. Offshore alternates should not be used in a hostile environment.

2.3.5 Meteorological Conditions

2.3.5.1 A flight to be conducted in accordance with VFR shall not be commenced unless current meteorological reports or a combination of current reports and forecasts indicate that the meteorological conditions along the route or that part of the route to
be flown or in the intended area of operations under VFR will, at the appropriate time, be such as to enable compliance with these rules and in accordance with the minimum visibilities for VFR operations stated in AOCR, Appendix T.

2.3.5.2 A flight to be conducted in accordance with IFR shall not be commenced unless information is available which indicates that conditions at the destination heliport or landing location or, when an alternate is required, at least one alternate heliport will, at the estimated time of arrival, be at or above the heliport operating minima.

2.3.5.3 To ensure that an adequate margin of safety is observed in determining whether or not an approach and landing can be safely carried out at each alternate heliport or landing location, the operator shall specify appropriate incremental values for height of cloud base and visibility, acceptable to the CAAT, to be added to the operator’s established heliport or landing location operating minima.

2.3.5.4 A flight to be operated in known or expected icing conditions shall not be commenced unless the helicopter is certificated and equipped to cope with such conditions.

2.3.5.5 A flight to be planned or expected to operate in suspected or known ground icing conditions shall not be commenced unless the helicopter has been inspected for icing and, if necessary, has been given appropriate de-icing/anti-icing treatment. Accumulation of ice or other naturally occurring contaminants shall be removed so that the helicopter is kept in an airworthy condition prior to take-off.

2.3.6 Fuel and Oil Requirements

2.3.6.1 All helicopters. A flight shall not be commenced unless, taking into account both the meteorological conditions and any delays that are expected in flight, the helicopter carries sufficient fuel and oil to ensure that it can safely complete the flight. In addition, a reserve shall be carried to provide for contingencies.

2.3.6.2 VFR operations. The fuel and oil carried in order to comply with 2.3.6.1 shall, in the case of VFR operations, be at least the amount to allow the helicopter to:

(a) fly to the landing site to which the flight is planned;

(b) have final reserve fuel to fly thereafter for a period of 20 minutes at best-range speed; and

(c) have an additional amount of fuel to provide for the increased consumption on the occurrence of any of the potential contingencies specified by the operator to the satisfaction of the CAAT.

2.3.6.3 IFR operations. The fuel and oil carried in order to comply with 2.3.6.1 shall, in the case of IFR operations, be at least the amount to allow the helicopter:

(a) When an alternate is not required, in terms of 2.3.4.2 (a) i), to fly to and execute an approach at the heliport or landing location to which the flight is planned, and thereafter to have:
1) final reserve fuel to fly 30 minutes at holding speed at 450 m (1 500 ft) above the destination heliport or landing location under standard temperature conditions and approach and land; and

2) an additional amount of fuel to provide for the increased consumption on the occurrence of any of the potential contingencies specified by the operator to the satisfaction of the CAAT.

(b) When an alternate is required, to fly to and execute an approach, and a missed approach, at the heliport or landing location to which the flight is planned, and thereafter:

1) fly to and execute an approach at the alternate specified in the flight plan; and then

2) have final reserve fuel to fly for 30 minutes at holding speed at 450 m (1 500 ft) above the alternate under standard temperature conditions, and approach and land; and

3) have an additional amount of fuel to provide for the increased consumption on the occurrence of any of the potential contingencies specified by the operator to the satisfaction of the CAAT.

(c) When no alternate heliport or landing location is available, in terms of 2.3.4.2(a) (e.g. the destination is isolated), sufficient fuel shall be carried to enable the helicopter to fly to the destination to which the flight is planned and thereafter for a period that will, based on geographic and environmental considerations, enable a safe landing to be made.

(d) In computing the fuel and oil required in 2.3.6.1, at least the following shall be considered:

1) meteorological conditions forecast;

2) expected air traffic control routings and traffic delays;

3) for IFR flight, one instrument approach at the destination heliport, including a missed approach;

4) the procedures prescribed in the operations manual for loss of pressurization, where applicable, or failure of one engine while en route; and

5) any other conditions that may delay the landing of the helicopter or increase fuel and/or oil consumption.

(e) The use of fuel after flight commencement for purposes other than originally intended during pre-flight planning shall require a re-analysis and, if applicable, adjustment of the planned operation.
2.3.7 **Refueling with passengers on board**

Refueling with passengers on board shall not be allowed during passenger boarding, offloading, or when the rotors are still turning, unless qualified personnel are in the helicopter and are ready to evacuate passengers from helicopter safely and rapidly.

2.3.8 **Oxygen supply;**

2.3.8.1 A flight to be operated at flight altitudes at which the atmospheric pressure in personnel compartments will be less than 700 hPa or above 10,000 ft shall not be commenced unless sufficient stored breathing oxygen is carried to supply:

(a) all crew members and 10 per cent of the passengers for any period in excess of 30 minutes that the pressure in compartments occupied by them will be between 700 hPa and 620 hPa or height between 10,000 to 13,000 ft; and

(b) the crew and passengers for any period that the atmospheric pressure in compartments occupied by them will be less than 620 hPa or height above 13,000 ft.

2.3.8.2 A flight to be operated with a pressurized helicopter shall not be commenced unless a sufficient quantity of stored breathing oxygen is carried to supply all the crew members and passengers, as is appropriate to the circumstances of the flight being undertaken, in the event of loss of pressurization, for any period that the atmospheric pressure in any compartment occupied by them would be less than 700 hPa. In addition, when the helicopter is operated at flight altitudes at which the atmospheric pressure is below 376 hPa or height above 25,000 ft or atmospheric pressure is more than 376 hPa or height below 25,000 ft and cannot descend safely to a flight altitude at which the atmospheric pressure is equal to 620 hPa or height 13,000 ft within four minutes, there shall be no less than a 10-minute supply for the occupants of the passenger compartment.

2.4 **IN-FLIGHT PROCEDURES**

2.4.1 Heliport operating minima

2.4.1.1 A flight shall not be continued towards the heliport of intended landing, unless the latest available information indicates that at the expected time of arrival, a landing can be effected at that heliport, or at least one alternate heliport, in compliance with the operating minima established in accordance with 2.2.8.1.

2.4.1.2 An instrument approach shall not be continued below 300 m (1 000 ft) above the heliport elevation or into the final approach segment unless the reported visibility or controlling RVR is at or above the heliport operating minima.

2.4.1.3 If, after entering the final approach segment or after descending below 300 m (1 000 ft) above the heliport elevation, the reported visibility or controlling RVR falls below the specified minimum, the approach may be continued to DA/H or MDA/H. In any case, a helicopter shall not continue its approach-to-land at any heliport beyond a point at which the limits of the operating minima specified for that heliport would be infringed.
2.4.2 Meteorological observations

(a) The operator shall establish a policy and procedures for its flight crew to record and report meteorological observations observed during flight.

(b) Instructions on the reporting of meteorological observations should be based on information and guidance provided in the AIP and/or in the publications issued by the foreign authorities responsible for the airspaces through which the flight is flown.

(c) The operator shall require its flight crew to report special observations of the following conditions encountered or observed during climb out and approach:

1) moderate or severe turbulence; or
2) moderate or severe icing; or
3) severe mountain wave; or
4) thunderstorms, without hail, that are obscured, embedded, widespread or in squall lines; or
5) thunderstorms, with hail, that are obscured, embedded, widespread or in squall lines; or
6) heavy duststorm or heavy sandstorm.

(d) The pilot-in-command shall report the runway braking action special air-report (AIREP) when the runway braking action encountered is not as good as reported.

Note.— The procedures for making meteorological observations on board aircraft in flight and for recording and reporting them are contained in Annex 3, the PANS-ATM (Doc 4444) and the appropriate Regional Supplementary Procedures (Doc 7030).

2.4.3 Hazardous Flight Conditions

Hazardous flight conditions encountered, other than those associated with meteorological conditions, shall be reported to the appropriate aeronautical station as soon as possible. The reports shall give such details as may be relevant to the safety of other aircraft.

2.4.4 Flight crew members at duty stations

2.4.4.1 Take-off and landing

All flight crew members required to be on flight deck duty shall be at their stations.
2.4.4.2 **En route**

All flight crew members required to be on flight deck duty shall remain at their stations except when their absence is necessary for the performance of duties in connection with the operation of the helicopter or for physiological needs.

2.4.4.3 **Seat belts.**

All flight crew members shall keep their seat belt fastened when at their stations.

2.4.4.4 **Safety harness.**

Any flight crew member occupying a pilot’s seat shall keep the safety harness fastened during the take-off and landing phases; all other flight crew members shall keep their safety harness fastened during the take-off and landing phases unless the shoulder straps interfere with the performance of their duties, in which case the shoulder straps may be unfastened but the seat belt must remain fastened.

2.4.5 **Use of oxygen**

All flight crew members, when engaged in performing duties essential to the safe operation of a helicopter in flight, shall use breathing oxygen continuously whenever the circumstances prevail for which its supply has been required in 2.3.8.1 or 2.3.8.2.

2.4.6 **(Reserved)**

2.4.7 **Instrument Flight procedures**

2.4.7.1 One or more instrument approach procedures to serve each final approach and take-off area or heliport utilized for instrument flight operations shall be approved and promulgated by the State in which the heliport is located, or by the State which is responsible for the heliport when located outside the territory of any State.

2.4.7.2 All helicopters operated in accordance with IFR shall comply with the instrument approach procedures approved by the State in which the heliport is located, or by the State which is responsible for the heliport when located outside the territory of any State.

2.4.8 **Helicopter operating procedures for noise abatement**

The operator shall ensure that take-off and landing procedures take into account the need to minimize the effect of helicopter noise.

2.4.9 **In Flight Fuel Management**

2.4.9.1 The operator shall establish policies and procedures, which are approved by the CAAT, to ensure that in-flight fuel checks and fuel management are performed.
2.4.9.2 The pilot-in-command shall monitor the amount of usable fuel remaining on board to ensure it is not less than the fuel required to proceed to a landing site where a safe landing can be made with the planned final reserve fuel remaining.

2.4.9.3 The pilot-in-command shall advise ATC of a minimum fuel state by declaring MINIMUM FUEL when, having committed to land at a specific landing site, the pilot calculates that any change to the existing clearance to that landing site, or other air traffic delays, may result in landing with less than the planned final reserve fuel.

2.4.9.4 The pilot-in-command shall declare a situation of fuel emergency by broadcasting MAYDAY MAYDAY MAYDAY FUEL, when the usable fuel estimated to be available upon landing at the nearest landing site where a safe landing can be made is less than the required final reserve fuel in compliance with 2.3.6.

2.5 DUTIES OF PILOT-IN-COMMAND

2.5.1 The pilot-in-command shall be responsible for the operation and safety of the helicopter and for the safety of all crew members, passengers and cargo on board, from the moment the engine(s) are started until the helicopter finally comes to rest at the end of the flight, with the engine(s) shut down and the rotor blades stopped.

2.5.2 The pilot-in-command shall ensure that the checklists specified in 4.3.5 are complied with in detail.

2.5.3 The pilot-in-command shall be responsible for notifying the nearest appropriate authority by the quickest available means of any accident involving the helicopter, resulting in serious injury or death of any person or substantial damage to the helicopter or property.

2.5.4 The pilot-in-command shall be responsible for reporting all known or suspected defects in the helicopter, to the operator, at the termination of the flight.

2.5.5 The pilot-in-command shall be responsible for the journey log book or the general declaration containing the information listed in 9.4.

2.6 DUTIES OF FLIGHT OPERATIONS OFFICERS / FLIGHT DISPATCHER

2.6.1 A flight operations officer/flight dispatcher in conjunction with a method of control and supervision of flight operations in accordance with 2.2.1.3 shall:

 a) assist the pilot-in-command in flight preparation and provide the relevant Information;

 b) assist the pilot-in-command in preparing the operational and ATS flight plans, sign when applicable and file the ATS flight plan with the appropriate ATS unit;

 c) furnish the pilot-in-command while in flight, by appropriate means, with information which may be necessary for the safe conduct of the flight.
2.6.2 In the event of an emergency, a flight operations officer/flight dispatcher shall:

a) initiate such procedures as outlined in the operations manual while avoiding taking any action that would conflict with ATC procedures;

b) convey safety-related information to the pilot-in-command that may be necessary for the safe conduct of the flight, including information related to any amendments to the flight plan that become necessary in the course of the flight; and

c) where necessary, notify the appropriate authorities without delay and request for assistance if required, if the emergency endangers the safety of the aircraft or persons and becomes known first to the flight operations officer/flight dispatcher.

Note: It is equally important that the pilot-in-command also conveys similar information to the flight operations officer/flight dispatcher during the course of the flight, particularly in the context of emergency situations.

2.6.3 The operator shall provide training for ground staff directly involved with flight operations (including flight operations officers/flight dispatchers), in particular those employed in operations and traffic departments. The operator shall ensure that the flight operations officer/flight dispatcher demonstrates that he/she has the knowledge; and that he/she maintains familiarisation with all features of the operation which are pertinent to such duties, including the knowledge and skills related to human performance. Further training will be necessary from time to time (e.g. when new types of aircraft are acquired) and the arrangements in this connection will be taken into account in the consideration of applications for the variation of Certificates.

The detail requirements for Flight Operations Officer/Flight Dispatcher are contained in AOCR Appendix L.

2.7 CARRY-ON BAGGAGE

The operator shall ensure that all baggage carried onto a helicopter and taken into the passenger cabin is adequately and securely stowed.

2.8 PSYCHOACTIVE SUBSTANCE

The operator shall ensure that no crew member shall undertake duties on an aircraft when under the influence of psychoactive substances or alcohol and comply in accordance with the Regulation of Civil Aviation Board No.67 on personnel discipline.
CHAPTER 3 HELICOPTER PERFORMANCE OPERATING LIMITATIONS

These requirements shall be complied in conjunction with the requirements of AOCR Chapter 9, Paragraph 10.

3.1 GENERAL

3.1.1 Helicopters shall be operated in accordance with the CAAT code of performance requirements given in AOCR Chapter 9, Paragraph 10. Helicopters operated in performance class 1 shall be certified in category A (as defined in Annex 8, Part IV) or equivalent as determined by the certifying authority for the state of design.

3.1.2 In conditions where the safe continuation of flight is not ensured in the event of a critical engine failure, helicopter operations shall be conducted in a manner that gives appropriate consideration for achieving a safe forced landing.

3.1.3 IMC operations in performance Class 3 are not permitted.

3.1.4 Where helicopters are operated to or from heliports in a congested hostile environment, the operator shall comply with requirements of the competent authority of the State in which the heliport is situated to enable these operations to be conducted in a manner that gives appropriate consideration for the risk associated with an engine failure.

3.2 HELICOPTER CERTIFICATED IN ACCORDANCE WITH PART IV OF ANNEX 8

3.2.1 The Standards contained in 3.2.2 to 3.2.7 inclusive are applicable to the helicopters to which Annex 8, Part IV is applicable.

3.2.2 The level of performance defined by the appropriate parts of the CAAT code of performance referred to in 3.1.1 for the helicopters designated in 3.2.1 shall be consistent with the overall level embodied in the Standards of this chapter.

3.2.3 A helicopter shall be operated in compliance with the terms of its certificate of airworthiness and within the approved operating limitations contained in its flight manual.

3.2.4 The Operator shall take such precautions as are reasonably possible to ensure that the general level of safety contemplated by these provisions is maintained under all expected operating conditions, including those not covered specifically by the provisions of this Chapter.

3.2.5 A flight shall not be commenced unless the performance information provided in the flight manual indicates that the Standards of 3.2.6 and 3.2.7 can be complied with for the flight to be undertaken.

3.2.6 The operator shall take account of all factors that significantly affect the performance of the helicopter (such as: mass, operating procedures, the pressure-altitude
appropriate to the elevation of the operating site, temperature, wind and condition of the surface). Such factors shall be taken into account directly as operational parameters or indirectly by means of allowances or margins, which may be provided in the scheduling of performance data or in the code of performance in accordance with which the helicopter is being operated.

3.2.7 Mass limitations

(a) The mass of the helicopter at the start of take-off shall not exceed the mass at which the code of performance referred to in 3.1.1 is complied with, allowing for expected reductions in mass as the flight proceeds and for such fuel jettisoning as is appropriate.

(b) In no case shall the mass at the start of take-off exceed the maximum take-off mass specified in the helicopter flight manual taking into account the factors specified in 3.2.6.

(c) In no case shall the estimated mass for the expected time of landing at the destination and at any alternate exceed the maximum landing mass specified in the helicopter flight manual taking into account the factors specified in 3.2.6.

(d) In no case shall the mass at the start of take-off, or at the expected time of landing at the destination and at any alternate, exceed the relevant maximum mass at which compliance has been demonstrated with the applicable noise certification Standards in Annex 16, Volume I, unless otherwise authorized in exceptional circumstances for a certain operating site where there is no noise disturbance problem, by the competent authority of the State in which the operating site is situated.

3.2.7.1 Helicopter Performance

The CAAT has not applied a risk methodology to establish a code of performance so the Standards of 3.2.7.2, 3.2.7.3 and 3.2.7.4 shall apply.

3.2.7.2 Take-off and Initial climb phase

(a) Operations in performance Class 1.

The helicopter shall be able, in the event of the failure of the critical engine being recognized at or before the take-off decision point, to discontinue the take-off and stop within the rejected take-off area available or, in the event of the failure of the critical engine being recognized at or after the take-off decision point, to continue the take-off, clearing all obstacles along the flight path by an adequate margin until the helicopter is in a position to comply with 3.2.7.3(a).

(b) Operations in performance Class 2.

The helicopter shall be able, in the event of the failure of the critical engine at any time after reaching DPATO, to continue the take-off, clearing all obstacles along the flight path by an adequate margin until the helicopter is in a position to comply with 3.2.7.3 (a) Before the DPATO, failure of the critical engine may cause the helicopter to force-land; therefore, the conditions stated in 3.1.2 shall apply.
(c) **Operations in performance Class 3.**
At any point of the flight path, failure of an engine will cause the helicopter to force-land; therefore, the conditions stated in 3.1.2 shall apply.

3.2.7.3 En-route phase

(a) **Operations in performance Classes 1 and 2.**
The helicopter shall be able, in the event of the failure of the critical engine at any point in the en-route phase, to continue the flight to a site at which the conditions of 3.2.7.4(a) for operations in performance Class 1, or the conditions of 3.2.7.4(b) for operations in performance Class 2 can be met, without flying below the appropriate minimum flight altitude at any point.

When the en-route phase is conducted over a hostile environment and the diversion time to an alternate would exceed two hours, the operator shall assess the risks associated with a second engine failure.

(b) **Operations in performance Class 3.**
The helicopter shall be able, with all engines operating, to continue along its intended route or planned diversions without flying at any point below the appropriate minimum flight altitude. At any point of the flight path, failure of an engine will cause the helicopter to force-land; therefore, the conditions stated in 3.1.2 shall apply.

3.2.7.4 Approach and landing phase

(a) **Operations in performance Class 1.**
In the event of the failure of the critical engine being recognized at any point during the approach and landing phase, before the landing decision point, the helicopter shall, at the destination and at any alternate, after clearing all obstacles in the approach path, be able to land and stop within the landing distance available or to perform a balked landing and clear all obstacles in the flight path by an adequate margin equivalent to that specified in 3.2.7.2(a). In case of the failure occurring after the landing decision point, the helicopter shall be able to land and stop within the landing distance available.

(b) **Operations in performance Class 2.**
In the event of the failure of the critical engine before the DPBL, the helicopter shall, at the destination and at any alternate, after clearing all obstacles in the approach path, be able either to land and stop within the landing distance available or to perform a balked landing and clear all obstacles in the flight path by an adequate margin equivalent to that specified in 3.2.7.2(b) After the DPBL, failure of an engine may cause the helicopter to force-land; therefore, the conditions stated in 3.1.2 shall apply.

(c) **Operations in performance Class 3.**
At any point of the flight path, failure of an engine will cause the helicopter to force-land; therefore, the conditions stated in 3.1.2 shall apply.
3.3 OBSTACLE DATA

The operator shall use available obstacle data to develop procedures to comply with the take-off, initial climb, approach and landing phases detailed in the helicopter code of performance that is published in AOCR Chapter 9, Paragraph 10.
CHAPTER 4 HELICOPTER INSTRUMENTS, EQUIPMENT AND FLIGHT DOCUMENTS

The operator shall operate in accordance with the standard of helicopter instruments, equipment and flight documents as specified in the following requirement.

4.1 GENERAL

4.1.1 In addition to the minimum equipment necessary for the issuance of a certificate of airworthiness, the instruments, equipment and flight documents prescribed in the following paragraphs shall be installed or carried, as appropriate, in helicopters according to the helicopter used and to the circumstances under which the flight is to be conducted. The prescribed instruments and equipment, including their installation, shall be approved or accepted by the CAAT.

4.1.2 A helicopter shall carry a certified true copy of the air operator certificate specified in 2.2.1, and a copy of the operations specifications relevant to the helicopter type, issued in conjunction with the certificate. When the certificate and the associated operations specifications are issued by the CAAT in a language other than English, an English translation shall be included.

4.1.3 The operator shall include in the operations manual, a minimum equipment list (MEL), complying with the Announcement of the Department of Civil Aviation on Approval of Minimum Equipment List B.E. 2555 and AOCR, and approved by the CAAT, which will enable the pilot-in-command to determine whether a flight may be commenced or continued from any intermediate stop should any instrument, equipment or systems become inoperative.

4.1.4 The operator shall make available to operations staff and crew members an aircraft operating manual, for each aircraft type operated, containing the normal, abnormal and emergency procedures relating to the operation of the aircraft. The manual shall include details of the aircraft systems and of the checklists to be used. The design of the manual shall observe Human Factors principles. The manual shall be easily accessible to the flight crew during all flight operations.

4.2 ALL HELICOPTERS ON ALL FLIGHTS

4.2.1 A helicopter shall be equipped with instruments that will enable the flight crew to control the flight path of the helicopter, carry out any required procedural maneuvers and observe the operating limitations of the helicopter in the expected operating conditions.

4.2.2 A helicopter shall be equipped with:

(a) Accessible and adequate medical supplies;

- Medical supplies should comprise a first-aid kit and for helicopters required to carry cabin crew as part of the operating crew, a universal
precaution kit, for the use of cabin crew in managing incidents of ill health associated with a case of suspected communicable disease, or in the case of illness involving contact with body fluids.

(b) portable fire extinguishers of a type which, when discharged, will not cause dangerous contamination of the air within the helicopter. At least one shall be located in:

1) the pilot’s compartment; and

2) each passenger compartment that is separate from the pilot’s compartment and that is not readily accessible to the flight crew.

Note 1.—Any portable fire extinguisher so fitted in accordance with the certificate of airworthiness of the helicopter may count as one prescribed.

Note 2.—Refer to 4.2.2.1 for fire extinguishing agents.

(c) Seats, Belts and Harnesses:

1) A seat or berth for each person over the age of 24 months;

2) a seat belt for each seat and restraining belts for each berth; and

3) a safety harness for each flight crew seat. The safety harness for each pilot seat shall incorporate a device which will automatically restrain the occupant’s torso in the event of rapid deceleration.

(d) Means of ensuring that the following information and instructions are conveyed to passengers:

1) when seat belts or harnesses are to be fastened;

2) when and how oxygen equipment is to be used if the carriage of oxygen is required;

3) restrictions on smoking;

4) location and use of life jackets or equivalent individual flotation devices where their carriage is required; and

5) location and method of opening emergency exits; and

(e) If fuses are used, spare electrical fuses of appropriate ratings for replacement of those accessible in flight.

4.2.2.1 Any agent used in a built-in fire extinguisher for each lavatory disposal receptacle for towels, paper or waste in a helicopter for which the individual certificate of airworthiness is first issued on or after 31 December 2011 and any extinguishing agent
used in a portable fire extinguisher in a helicopter for which the individual certificate of airworthiness is first issued on or after 31 December 2018 shall:

(a) meet the applicable minimum performance requirements of the Kingdom of Thailand; and

(b) not be of a type listed in the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer as it appears in the Eighth Edition of the Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer, Annex A, Group II.

4.2.3 A helicopter shall carry:

(a) the operations manual prescribed in 2.2.2, or those parts of it that pertain to flight operations;

(b) the helicopter flight manual for the helicopter, or other documents containing performance data required for the application of Chapter 3 and any other information necessary for the operation of the helicopter within the terms of its certificate of airworthiness, unless these data are available in the operations manual;

(c) current and suitable charts to cover the route of the proposed flight and any route along which it is reasonable to expect that the flight may be diverted;

(d) aerodrome information relevant to operating route;

(e) minimum equipment list (MEL);

(f) technical log book;

(g) certified true and copy of AOC by the CAAT;

(h) certificate of registration;

(i) certificate of airworthiness;

(j) a journey log book;

(k) a personnel licence of each member of personnel;

(l) a communication radio licence;

(m) noise certificate;

(n) weather information;

(o) mass and balance sheet;

(p) passenger manifest at departure and destination airport;
(q) cargo manifest (if applicable to the cargo flight and list of carry on cargo);

(r) operational flight plan;

(s) ATC flight plan; and

(t) NOTAMs.

4.2.4 **Marking of Break in Points**

4.2.4.1 If applicable, if areas of the fuselage suitable for break-in by rescue crews in an emergency are marked on a helicopter, such areas shall be marked as shown below (see figure following). The colour of the markings shall be red or yellow, and if necessary they shall be outlined in white to contrast with the background.

4.2.4.2 If the corner markings are more than 2 m apart, intermediate lines 9 cm × 3 cm shall be inserted so that there is no more than 2 m between adjacent markings.

![MARKING OF BREAK-IN POINTS (see 4.2.4.)](image)

4.3 **FLIGHT RECORDERS**

Flight recorders are comprised of Flight Data Recorders (FDR) and Cockpit Voice Recorder (CVR).

Note:

1) **Crash protected flight recorders** comprise one or more of the following systems: a flight data recorder (FDR), a cockpit voice recorder (CVR), an airborne image recorder (AIR) and/or a data link recorder (DLR). Image and data link information may be recorded on either the CVR or the FDR.

2) **Lightweight flight recorders** comprise one or more of the following systems: an aircraft data recording system (ADRS), a cockpit audio recording system (CARS), an airborne image recording system (AIRS) and/or a data link recording system (DLRS). Image and data link information may be recorded on either the CARS or the ADRS.
3) For helicopters for which the application for type certification is submitted to the State of Design before 1 January 2016, specifications applicable to flight recorders may be found in EUROCAE ED-112, ED-56A, ED-55, Minimum Operational Performance Specifications (MOPS), or earlier equivalent documents.

4) For helicopters for which the application for type certification is submitted to the State of Design on or after 1 January 2016, specifications applicable to flight recorders may be found in EUROCAE ED-112A, Minimum Operational Performance Specification (MOPS), or equivalent documents.

4.3.1 Flight Data Recorder and aircraft data recording systems (FDR)

4.3.1.1 Type of Flight Data Recorder and supporting information

(a) A Type IV FDR shall record the parameters required to determine accurately the helicopter flight path, speed, attitude, engine power and operation.

(b) A Type IVA FDR shall record the parameters required to determine accurately the helicopter flight path, speed, attitude, engine power, operation and configuration.

(c) A Type V FDR shall record the parameters required to determine accurately the helicopter flight path, speed, attitude and engine power.

4.3.1.2 Operation

(a) All helicopters of a maximum certificated take-off mass of over 3 175 kg for which the individual certificate of airworthiness is first issued on or after 1 January 2016 shall be equipped with a Type IVA FDR.

(b) All helicopters of a maximum certificated take-off mass of over 7 000 kg, or having a passenger seating configuration of more than nineteen, for which the individual certificate of airworthiness is first issued on or after 1 January 1989 shall be equipped with a Type IV FDR.

(c) All turbine-engined helicopters of a maximum certificated take-off mass of over 2 250 kg, up to and including 3 175 kg for which the application for type certification was submitted to the State of Design on or after 1 January 2018 shall be equipped with:

1) a Type IV A FDR or

2) a Class C AIR capable of recording flight path and speed parameters displayed to the pilot(s), or

3) an ADRS capable of recording the essential parameters (as described details in Annex 6 Part 3, Table A4-3 of Appendix 4).
4.3.1.3 Discontinuation of Flight Recorder Types

(a) The use of engraving metal foil FDRs shall be discontinued.

(b) The use of photographic film FDRs shall be discontinued.

(c) The use of analogue FDRs using frequency modulation (FM).

(d) The use of magnetic tape FDRs shall be discontinued.

4.3.1.4 Duration

All flight recorders shall be capable of retaining the information recorded during at least the last ten hours of their operation.

4.3.2 Cockpit Voice Recorders: CVR

4.3.2.1 Operation

(a) All helicopters of a maximum certificated take-off mass of over 7 000 kg for which the individual certificate of airworthiness is first issued on or after 1 January 1987 shall be equipped with a CVR. For helicopters not equipped with an FDR, at least main rotor speed shall be recorded on the CVR.

(b) All helicopters of a maximum certificated take-off mass of over 7 000 kg for which the individual certificate of airworthiness was first issued before 1 January 1987 shall be equipped with a CVR. For helicopters not equipped with an FDR, at least main rotor speed shall be recorded on the CVR.

4.3.2.2 Discontinuation of CVR Types

The use of magnetic tape and wire CVRs shall be discontinued.

4.3.2.3 Duration

(a) A CVR shall be capable of retaining the information recorded during at least the last 30 minutes of its operation.

(b) All helicopters required to be equipped with a CVR shall be equipped with a CVR capable of retaining the information recorded during the last two hours of its operation.

4.3.3 Data Link Recorder

4.3.3.1 Applicability

(a) All helicopters for which the individual certificate of airworthiness is first issued on or after 1 January 2016, which utilize any of the data link communications applications listed (as described details in 5.1.2 of Appendix 4 of Annex 6 Part 3) and are required to carry a CVR, shall record on a flight recorder the data link communications messages.
(b) All helicopters which are modified on or after 1 January 2016 to install and utilize any of the data link communications applications listed (as described details in 5.1.2 of Appendix 4 of Annex 6 Part 3) and are required to carry a CVR shall record on a flight recorder the data link communications messages.

4.3.3.2 Duration
The minimum recording duration shall be equal to the duration of the CVR.

4.3.3.3 Correlation
Data link recording shall be able to be correlated to the recorded cockpit audio.

4.3.4 Flight Recorders — General

4.3.4.1 Construction and installation

Flight recorders shall be constructed, located and installed so as to provide maximum practical protection for the recordings in order that the recorded information may be preserved, recovered and transcribed. Flight recorders shall meet the prescribed crashworthiness and fire protection specifications.

Note: Specifications applicable to flight recorders may found in European Organization for Civil Aviation Equipment (EUROCAE) Documents ED-112 or equivalent documents.

4.3.4.2 Operations

(a) Flight recorders shall not be switched off during flight time.

(b) To preserve flight recorder records, flight recorders shall be deactivated upon completion of flight time following an accident or incident. The flight recorders shall not be reactivated before their disposition as determined in accordance with the Air Accident Investigation Regulations of the Kingdom of Thailand.

4.3.4.3 Continued serviceability

Operational checks and evaluations of recordings from the flight recorder systems shall be conducted to ensure the continued serviceability of the recorders as contained details in Appendix A.

4.4 INSTRUMENTS AND EQUIPMENT FOR FLIGHTS OPERATED UNDER VFR AND IFR - BY DAY AND NIGHT

4.4.1 All helicopters when operating in accordance with VFR by day shall be equipped with:

(a) a magnetic compass;

(b) an accurate timepiece indicating the time in hours, minutes and seconds;

(c) a sensitive pressure altimeter;
(d) an airspeed indicator; and

(e) such additional instruments or equipment as may be prescribed by the CAAT.

4.4.2 All helicopters when operating in accordance with VFR at night shall be equipped with:

(a) the equipment specified in 4.4.1;

(b) an attitude indicator (artificial horizon) for each required pilot and one additional attitude indicator;

(c) a slip indicator;

(d) a heading indicator (directional gyroscope);

(e) a rate of climb and descent indicator;

(f) such additional instruments or equipment as may be prescribed by the CAAT;

and the following lights:

(g) the Navigation lights and anti-collision lights required by Regulation of Civil Aviation Board No. 94 on Rules of the air for aircraft in flight or operating on the movement area of a heliport;

(h) two landing lights or if only one landing light is available, at least 2 independent filaments shall be available;

(i) illumination for all instruments and equipment that are essential for the safe operation of the helicopter that are used by the flight crew;

(j) lights in all passenger compartments; and

(k) a flashlight for each crew member station.

4.4.3 All helicopters when operating in accordance with IFR, or when the helicopter cannot be maintained in a desired attitude without reference to one or more flight instruments, shall be equipped with:

(a) a magnetic compass;

(b) an accurate timepiece indicating the time in hours, minutes and seconds;

(c) two sensitive pressure altimeters;

(d) an airspeed indicating system with means of preventing malfunctioning due to either condensation or icing;

(e) a slip indicator;
(f) an attitude indicator (artificial horizon) for each required pilot and one additional attitude indicator;

(g) a heading indicator (directional gyroscope);

(h) a means of indicating whether the power supply to the gyroscope instrument is adequate in the flight;

(i) a means of indicating on the flight deck the outside air temperature;

(j) a rate of climb and descent indicator;

(k) stabilization system, unless it has been demonstrated to the satisfaction of the certifying authority that the helicopter possesses, by nature of its design, adequate stability without such a system;

(l) such additional instruments or equipment as may be prescribed by the CAAT; and

(m) if operated at night, the lights specified in 4.4.2 (g) to (k).

4.4.3.1 All helicopters when operating in accordance with IFR shall be fitted with an emergency power supply, independent of the main electrical generating system, for the purpose of operating and illuminating, for a minimum period of 30 minutes, an attitude indicating instrument (artificial horizon), clearly visible to the pilot-in-command. The emergency power supply shall be automatically operative after the total failure of the main electrical generating system and clear indication shall be given on the instrument panel that the attitude indicator(s) is being operated by emergency power.

4.4.4 Radio altimeter

For offshore operation helicopters shall be equipped with a radio altimeter that is capable of emitting an audio warning below a pre-set height and a visual warning at a height selectable by the pilot.

4.5 ALL HELICOPTERS ON FLIGHT OVER WATER

4.5.1 Means of Flotation

All helicopters intended to be flown over water shall be fitted with a permanent or rapidly deployable means of flotation so as to ensure a safe ditching of the helicopter when:

(a) engaged in offshore operations, or other overwater operations as prescribed by the CAAT; or

(b) flying over water in a hostile environment at a distance from land corresponding to more than 10 minutes at normal cruise speed when operating in performance Class 1 or 2; or
(c) flying over water in a non-hostile environment at a distance from land specified by the appropriate authority of the responsible State when operating in performance Class 1; or

(d) flying over water beyond autorotational or safe forced landing distance from land when operating in performance Class 3.

4.5.2 Emergency Equipment

4.5.2.1 Helicopters operating in performance Class 1 or 2 and operating in accordance with the provisions of 4.5.1 shall be equipped with:

(a) one life jacket, or equivalent individual flotation device, for each person on board, stowed in a position easily accessible from the seat or berth of the person for whose use it is provided. For offshore operations the life jacket shall be worn constantly unless the occupant is wearing an integrated survival suit that includes the functionality of the life jacket;

(b) life-saving rafts in sufficient numbers to carry all persons on board, stowed so as to facilitate their ready use in emergency, provided with such life-saving equipment including means of sustaining life as is appropriate to the flight to be undertaken;

(c) when two life rafts are fitted, each shall be able to carry all occupants in the overload state; and

(d) equipment for making the pyrotechnical distress signals described in the Regulation of Civil Aviation Board No. 94 on Rule of the Air.

Note. — The life raft overload state has a design safety margin of 1.5 times the maximum capacity.

4.5.2.2 Helicopters operating in performance Class 3 when operating beyond autorotational distance from land shall be equipped with one life jacket, or equivalent individual flotation device, for each person on board, stowed in a position easily accessible from the seat or berth of the person for whose use it is provided.

4.5.2.3 For offshore operations, when operating beyond autorotational distance from land, the life jacket shall be worn unless the occupant is wearing an integrated survival suit that includes the functionality of the life jacket.

4.5.2.4 Helicopters operating in performance Class 3 when operating beyond the distance specified in 4.5.2.2 shall be equipped as in 4.5.2.1

4.5.2.5 In the case of helicopters operating in performance Class 2 or 3, when taking off or landing at a heliport where, the take-off or approach path is so disposed over water that in the event of a mishap there would be likelihood of a ditching, the equipment required in 4.5.2.1 (a) shall be carried.
4.5.2.6 Each life jacket and equivalent individual flotation device, when carried in accordance with 4.5, shall be equipped with a means of electric illumination for the purpose of facilitating the location of persons.

4.5.3 **All Helicopters on Flights Over Designated Sea Areas**

4.5.3.1 Helicopters, when operating over sea areas which have been designated by the State concerned as areas in which search and rescue would be especially difficult, shall be equipped with life-saving equipment (including means of sustaining life) as may be appropriate to the area overflown.

4.6 **ALL HELICOPTER ON FLIGHT OVER DESIGNATED LAND AREAS**

Helicopters, when operated across land areas which have been designated by the State concerned as areas in which search and rescue would be especially difficult, shall be equipped with such signaling devices and life-saving equipment (including means of sustaining life) as may be appropriate to the area overflown.

4.7 **EMERGENCY LOCATOR TRANSMITTER (ELT)**

4.7.1 All helicopters operating in performance Class 1, 2 and 3 shall be equipped with at least one automatic ELT and, when operating on flights over water as described in 4.5.1(a), with at least one automatic ELT and one ELT(s) in a raft or life jacket.

4.7.2 The ELT shall be able to transmit on 121.5 MHz and 406 MHz simultaneously.

4.8 **AUTOMATICALLY DEPLOYABLE EMERGENCY LOCATOR TRANSMITTER (ELT(AD))**

For offshore operation, the helicopter shall be equipped with an ELT(AD) that is capable of transmitting simultaneously on 121.5 MHz and 406 MHz.

4.9 **ALL HELICOPTER ON HIGH ALTITUDE FLIGHTS**

4.9.1 A helicopter intended to be operated at flight altitudes at which the atmospheric pressure is less than 700 hPa in personnel compartments shall be equipped with oxygen storage and dispensing apparatus capable of storing and dispensing the oxygen supplies required in 2.3.8.1.

4.9.2 A helicopter intended to be operated at flight altitudes at which the atmospheric pressure is less than 700 hPa but which is provided with means of maintaining pressures greater than 700 hPa in personnel compartments shall be provided with oxygen storage and dispensing apparatus capable of storing and dispensing the oxygen supplies required in 2.3.8.2.

4.9.3 A helicopter intended to be operated at flight altitudes at which the atmospheric pressure is less than 376 hPa which cannot descend safely within four minutes to a flight altitude at which the atmospheric pressure is equal to 620 hPa, shall be provided with automatically deployable oxygen equipment to satisfy the requirements of 2.3.8.2. The total number of oxygen dispensing units shall exceed the number of passenger and cabin crew seats by at least 10 per cent.
4.10 ALL HELICOPTER IN ICING CONDITIONS

All helicopters shall be equipped with suitable anti-icing and/or de-icing devices when operated in circumstances in which icing conditions are reported to exist or are expected to be encountered.

4.11 HELICOPTER WHEN CARRYING PASSENGER—SIGNIFICANT-WEATHER DETECTION

Helicopters when carrying passengers shall be equipped with operative weather radar or other significant-weather detection equipment whenever such helicopters are being operated in areas where thunderstorms or other potentially hazardous weather conditions, regarded as detectable, may be expected to exist along the route either at night or under instrument meteorological conditions.

4.12 ALL HELICOPTER REQUIRED TO COMPLY WITH THE NOISE CERTIFICATION STANDARDS IN ANNEX 16, VOLUME I

All helicopters shall carry a document attesting noise certification. When the document is issued in a language other than English, it shall also include an English translation.

4.13 HELICOPTERS CARRYING PASSENGERS—CABIN CREW SEATS

4.13.1 All helicopters shall be equipped with a forward or rearward facing (within 15 degrees of the longitudinal axis of the helicopter) seat, fitted with a safety harness for the use of each cabin crew member required to satisfy the intent of 10 in respect of emergency evacuation.

4.13.2 Cabin crew seats shall be located near floor level and another emergency exits for emergency evacuation.

4.14 HELICOPTER REQUIRED TO BE EQUIPPED WITH A PRESSURE-ALTITUDE REPORTING TRANSPONDER

Except as may be otherwise authorized by the CAAT, all helicopters shall be equipped with a pressure-altitude reporting transponder.

4.15 MICROPHONES

All flight crew members required to be on flight deck duty shall communicate through boom or throat microphones.

4.16 VIBRATION HEALTH MONITORING (VHM)

4.16.1 The following helicopters conducting Commercial Air Transport offshore operations in a hostile environment shall be fitted with a VHM system capable of monitoring the status of critical rotor and rotor drive systems by 1 January 2019:

(a) All multi engine helicopters over 3 175 kg MTOW, or certificated for operations with at least two crew, first issued with an individual Certificate of Airworthiness
(C of A) after 31 December 2016;

(b) All helicopters with a maximum operational passenger seating configuration (MOPSC) of more than 9 and first issued with an individual C of A before 1 January 2017;

(c) All helicopters first issued with an individual C of A after 31 December 2018.

4.16.2 The operator shall have a system to:

(a) collect the data including system generated alerts;

(b) analyse and determine component serviceability; and

(c) respond to detected incipient failures.

4.17 HELICOPTERS EQUIPPED WITH AUTOMATIC LANDING SYSTEMS, A HEAD-UP DISPLAY (HUD) OR EQUIVALENT DISPLAYS, ENHANCED VISION SYSTEMS (EVS), SYNTHETIC VISION SYSTEMS (SVS) AND/OR COMBINED VISION SYSTEMS (CVS)

4.17.1 Where helicopters are equipped with automatic landing systems, HUD or equivalent displays, EVS, SVS or CVS, or any combination of those systems into a hybrid system, the use of such systems for the safe operation of a helicopter shall be approved by the CAAT.

4.17.2 To obtain an operational approval from the CAAT, the operator shall provide evidence that:

(a) the equipment meets the appropriate airworthiness certification requirements and is acceptable to the CAAT;

(b) a safety risk assessment of the operations supported by the automatic landing systems, a HUD or equivalent displays, EVS, SVS or CVS has been carried out; and

(c) it has established and documented the procedures for the use of, and training requirements for, automatic landing systems, a HUD or equivalent displays, EVS, SVS or CVS.

4.18 HELICOPTER TERRAIN AWARENESS WARNING SYSTEM (HTAWS)

Helicopters with a maximum certificated take-off mass of more than 3 175 kg or a MOPSC of more than 9 and first issued with an individual C of A after 31 December 2018 shall be equipped with an HTAWS that meets the requirements for class A equipment as specified in an acceptable standard.

4.19 ELECTRONIC FLIGHT BAGS (EFBs)

4.19.1 Where portable EFBs are used on board a helicopter, the operator shall ensure that they
do not affect the performance of the helicopter systems, equipment or the ability to operate the helicopter.

4.19.2 EFB functions

(a) Where EFBs are used on board a helicopter the operator shall:

1) assess the safety risk(s) associated with each EFB function;

2) establish and document the procedures for the use of, and training requirements for, the device and each EFB function; and

3) ensure that, in the event of an EFB failure, sufficient information is readily available to the flight crew for the flight to be conducted safely.

(b) The operational use of EFB functions to be used for the safe operation of helicopters shall be approved by the CAAT.

4.19.3 EFB operational approval

The operator shall ensure that:

(a) the EFB equipment and its associated installation hardware, including interaction with helicopter systems if applicable, meet the appropriate airworthiness certification requirements and are approved by the CAAT;

(b) they have assessed and documented the safety risks associated with the operations supported by the EFB function(s);

(c) they have established requirements for redundancy of the information (if appropriate) contained and displayed by the EFB function(s);

(d) they have established and documented procedures for the management of the EFB function(s) including any databases it may use; and

(e) they have established and documented the procedures for the use of, and training requirements for the EFB function(s).

4.20 Public Address (PA) system

The operator shall comply with the Public Address (PA) system in helicopters used for CAT:

(a) Helicopters with a maximum operational passenger seat configuration (MOPSC) of more than 9 shall be equipped with a PA system.

(b) Helicopters with an MOPSC of 9 or less need not be equipped with a PA system if the operator can demonstrate that the pilot's voice is understandable at all passengers' seats in flight.
CHAPTER 5 HELICOPTER COMMUNICATION,
NAVIGATION AND SURVEILLANCE
EQUIPMENT

5.1 COMMUNICATION EQUIPMENT

5.1.1 A helicopter shall be provided with radio communication equipment capable of:

(a) Conducting two-way communication for heliport control purposes;

(b) Receiving meteorological information at any time during flight; and

(c) Conducting two-way communication at any time during flight with at least one aeronautical station and with such other aeronautical stations and on such frequencies as may be prescribed by the appropriate authority.

5.1.2 The radio communication equipment required in accordance with 5.1.1 shall provide for communications on the aeronautical emergency frequency 121.5 MHz.

5.1.3 For flights in defined portions of airspace or on routes where an RCP type has been prescribed, a helicopter shall, in addition to the requirements specified in in 5.1.1 the Manual on Required Communications Performance (RCP) (Doc 9869).

5.1.3 For operations where communication equipment is required to meet an RCP specification for performance-based communication (PBC), a helicopter shall, in addition to the requirements specified in 5.1.1:

(a) be provided with communication equipment which will enable it to operate in accordance with the prescribed RCP specification(s);

(b) have information relevant to the helicopter RCP specification capabilities listed in the flight manual or other helicopter documentation approved by the CAAT; and

(c) have information relevant to the helicopter RCP specification capabilities included in the MEL.

Note. — Information on the performance-based communication and surveillance (PBCS) concept and guidance material on its implementation are contained in the Performance-based Communication and Surveillance (PBCS) Manual (Doc 9869).

5.1.4 For operations where an RCP specification for PBC has been prescribed, the operator shall establish and document:

(a) normal and abnormal procedures, including contingency procedures;
(b) flight crew qualification and proficiency requirements, in accordance with appropriate RCP specifications;

(c) a training programme for relevant personnel consistent with the intended operations; and

(d) appropriate maintenance procedures to ensure continued airworthiness, in accordance with appropriate RCP specifications.

5.1.5 The operator in respect of helicopters in 5.1.3 shall ensure provisions exist for:

(a) providing reports of observed communication performance issues; and

(b) Taking immediate corrective action and reporting individual helicopters, helicopter types or operators, not complying with the RCP specification(s).

5.2 NAVIGATION EQUIPMENT

5.2.1 A helicopter shall be provided with navigation equipment which will enable it to proceed:

(a) In accordance with its operational flight plan; and

(b) In accordance with the requirements of air traffic services;

except when, if not so precluded by the appropriate authority, navigation for flights under VFR is accomplished by visual reference to landmarks.

5.2.2 For operations where a navigation specification for performance-based navigation (PBN) has been prescribed, a helicopter shall, in addition to the requirements specified in 5.2.1:

(a) be provided with navigation equipment which will enable it to operate in accordance with the prescribed navigation specification(s); and

(b) have information relevant to the helicopter navigation specification capabilities listed in the flight manual or other helicopter documentation approved by the State of Design or the CAAT; and

(c) have information relevant to the helicopter navigation specification capabilities included in the MEL.

5.2.3 The Operator shall, for operations where a navigation specification for PBN has been prescribed, shall establish and document:

(a) normal and abnormal procedures, including contingency procedures;

(b) flight crew qualification and proficiency requirements, in accordance with the appropriate navigation specifications;
(c) a training programme for relevant personnel consistent with the intended operations; and

(d) appropriate maintenance procedures to ensure continued airworthiness, in accordance with appropriate navigation specifications.

5.2.4 When satisfied, the CAAT shall issue a specific approval for operations based on PBN authorization required (AR) navigation specifications and RNP 0.3 Specifications.

5.2.5 The helicopter shall be sufficiently provided with navigation equipment to ensure that, in the event of the failure of one item of equipment at any stage of the flight, the remaining equipment will enable the helicopter to navigate in accordance with 5.2.1 and, where applicable, 5.2.2.

5.2.6 On flights in which it is intended to land in instrument meteorological conditions, a helicopter shall be provided with appropriate navigation equipment providing guidance to a point from which a visual landing can be effected. This equipment shall be capable of providing such guidance at each heliport at which it is intended to land in instrument meteorological conditions and at any designated alternate heliports.

5.3 SURVEILLANCE EQUIPMENT

5.3.1 A helicopter shall be provided with surveillance equipment which will enable it to operate in accordance with the requirements of air traffic services.

5.3.2 For operations where surveillance equipment is required to meet an RSP specification for performance-based surveillance (PBS), a helicopter shall, in addition to the requirements specified in 5.3.1:

(a) be provided with surveillance equipment which will enable it to operate in accordance with the prescribed RSP specification(s);

(b) have information relevant to the helicopter RSP specification capabilities listed in the flight manual or other helicopter documentation approved by the State of Design or State of Registry; and

(c) have information relevant to the helicopter RSP specification capabilities included in the MEL.

Note 1. — Information on surveillance equipment is contained in the Aeronautical Surveillance Manual (Doc 9924).

5.3.3 For operations where an RSP specification for PBS has been prescribed, the operator shall establish and document:

(a) normal and abnormal procedures, including contingency procedures;
(b) flight crew qualification and proficiency requirements, in accordance with appropriate RSP specifications;

(c) a training programme for relevant personnel consistent with the intended operations; and

(d) appropriate maintenance procedures to ensure continued airworthiness, in accordance with appropriate RSP specifications.

5.3.4 The operator in respect of helicopters in 5.3.2 shall ensure provisions exist for:

(a) providing reports of observed surveillance performance; and

(b) taking immediate corrective action for individual helicopter, helicopter types or operators, identified in such reports as not complying with the RSP specification(s).

5.4 EQUIPMENT INSTALLATION

The equipment installation shall be such that the failure of any single unit required for communication, navigation or surveillance purposes or any combination thereof will not result in the failure of another unit required for communication, navigation or surveillance purposes.

5.5 ELECTRONIC NAVIGATION DATA MANAGEMENT

5.5.1 The operator shall not use electronic navigation data products that have been processed for application in the air and on the ground, unless the CAAT has approved the operator’s procedures for ensuring that the process applied and the products delivered have met acceptable standards of integrity and that the products are compatible with the intended function of the existing equipment. The operator shall continue to monitor both the process and products.

Note. — Guidance relating to the processes that data suppliers may follow is contained in RTCA DO200A/EUROCAE ED-76 and RTCA DO-201A/EUROCAE ED-77.

5.5.2 The operator shall implement procedures that ensure the timely distribution and insertion of current and unaltered electronic navigation data to all necessary aircraft.
CHAPTER 6 HELICOPTER MAINTENANCE

6.1 OPERATOR’S MAINTENANCE RESPONSIBILITIES

6.1.1 The operator shall ensure that the maintenance of its helicopters is performed in accordance with AOCR Chapter 8 and Appendix W.

6.1.2 Operators shall ensure that, in accordance with procedures acceptable to the CAAT:

(a) Each helicopter they operate is maintained in an airworthy condition;

(b) The operational and emergency equipment necessary for the intended flight is serviceable; and

(c) The certificate of airworthiness of the helicopter they operate remains valid.

6.1.3 An operator shall not operate a helicopter unless it is maintained and released to service by an organization approved by the CAAT, or under an equivalent system up to and including line maintenance as approved in the General Maintenance Manual.

6.1.4 When the operator performs line maintenance under an equivalent system, the person signing the maintenance release shall be licensed in accordance with the Regulation on Civil Aviation Board No 77.

6.1.5 An operator shall employ a person or group of persons to ensure that all maintenance is carried out in accordance with the General Maintenance Manual.

6.2 GENERAL MAINTENANCE MANUAL

6.2.1 The operator shall develop a General Maintenance Manual (GMM) to describe the procedures necessary to ensure all scheduled and unscheduled maintenance is performed on the operator’s aircraft on time and in a controlled and satisfactory manner. The GMM shall describe the maintenance arrangements to support the operator’s operation. The design of the GMM should observe Human Factors principles.

6.2.3 The operator shall ensure that the GMM is amended as necessary to keep the information contained therein up-to-date.

6.2.3 Copies of all amendments to the operator’s General Maintenance Manual shall be furnished promptly to all organizations or persons to whom the manual has been issued.

6.3 MAINTENANCE PROGRAMME

6.3.1 The operator shall provide, for the use and guidance of maintenance and operational personnel concerned, a maintenance programme, approved by the CAAT, containing the information required by 9.3. The design and application of the operator’s maintenance programme shall observe Human Factors principles.

6.3.2 Copies of all amendments to the maintenance programme shall be furnished promptly
to all organizations or persons to whom the maintenance programme has been issued. If there are revisions, the air operator shall furnish the details or revisions to the CAAT for approval before being issued for use.

6.4 MAINTENANCE RECORDS

6.4.1 An operator shall ensure that the following records are kept for the periods mentioned in 6.4.2:

(a) The total time in service (hours, calendar time and cycles, as appropriate) of the helicopter and all life-limited components.

(b) The status of compliance with all mandatory continuing airworthiness information.

(c) Appropriate details of modifications and repairs to the helicopter and its major components.

(d) The time in service (hours, calendar time and cycles, as appropriate) since last overhaul of the helicopter or its components subject to a mandatory overhaul life;

(e) The status of the helicopter’s compliance with the maintenance programme; and

(f) The detailed maintenance records to show that all requirements for a maintenance release have been met.

6.4.2 The records in 6.4.1 (a) to (e) shall be kept for a minimum period of 90 days after the unit to which they refer has been permanently withdrawn from service, and the records in 6.4.1 (f) for a minimum period of one year after the signing of the maintenance release.

6.4.3 In the event of a temporary change of operator, the records shall be made available to the new operator. In the event of any permanent change of operator, the records shall be transferred to the new operator.

6.5 CONTINUING AIRWORTHINESS INFORMATION

6.5.1 The operator of a helicopter over 3175 kg MTOW shall monitor and assess maintenance and operational experience with respect to continuing airworthiness and provide the information and report through the system following the Regulation on Service Difficulty Reporting System.

6.5.2 The operator of a helicopter over 3175 kg MTOW shall obtain and assess continuing airworthiness information and recommendations available from the organization responsible for the type design (state agency) and shall implement resulting actions considered necessary in accordance with a procedure acceptable to the CAAT.

6.6 MODIFICATIONS AND REPAIRS

All modifications and repairs shall comply with the Regulation on Maintenance, Preventive Maintenance, Rebuilding and Altering and other future amendment. Procedures shall be established to ensure that the substantiating data supporting
compliance with the associated regulation are retained.

6.7 MAINTENANCE RELEASE

6.7.1 A maintenance release shall be completed and signed to certify that the maintenance work performed has been completed satisfactorily and in accordance with approved data and the procedures described in the maintenance organization’s procedures manual or Repair Station and Quality Control Manual (RSQM).

6.7.2 A maintenance release shall contain a certification including:

(a) Basic details of the maintenance carried out including detailed reference of the approved data used;

(b) The date such maintenance was completed;

(c) When applicable, the identity of the approved maintenance organization; and

(d) The identity of the person or persons signing the release.

The maintenance release shall be in accordance with the Regulation on Maintenance, Preventive Maintenance, Rebuilding and Alteration, and other future amendment.

6.8 RECORDS

6.8.1 The operator shall ensure that the following records are kept:

(a) in respect of the entire helicopter: the total time in service;

(b) in respect of the major components of the helicopter:

 1) the total time in service;

 2) the date of the last overhaul;

 3) the date of the last inspection;

(c) in respect of those instruments and equipment, the serviceability and operating life of which are determined by their time in service:

 1) such records of the time in service as are necessary to determine their serviceability or to compute their operating life;

 2) the date of the last inspection.

6.8.2 These records shall be kept for a period of 90 days after the end of the operating life of the unit to which they refer.
CHAPTER 7 HELOCOTER FLIGHT CREW

7.1 COMPOSITION OF THE FLIGHT CREW

7.1.1 The number and composition of the flight crew shall not be less than that specified in the operations manual. The flight crews shall include flight crew members in addition to the minimum numbers specified in the Rotocraft flight manual or other documents associated with the certificate of airworthiness, when necessitated by considerations related to the type of helicopter used, the type of operation involved and the duration of flight between points where flight crews are changed.

7.1.2 The flight crew shall include at least one member authorized by the CAAT to operate the type of radio transmitting equipment to be used.

7.2 FLIGHT CREW MEMBER EMERGENCY DUTIES

An operator shall, for each type of helicopter, assign to all flight crew members the necessary functions they are to perform in an emergency or in a situation requiring emergency evacuation. Annual training in accomplishing these functions shall be contained in the operator’s training programme and shall include instruction in the use of all emergency and life-saving equipment required to be carried and drills in the emergency evacuation of the helicopter.

7.3 FLIGHT CREW MEMBER TRAINING PROGRAMMES

7.3.1 The operator shall establish and maintain training programme in accordance with Appendix C and approved by the CAAT, which ensures that all flight crew members are adequately trained to perform their assigned duties. The training programme shall:

(a) Include ground and flight training facilities and properly qualified instructors as determined by the CAAT;

(b) Consist of ground and flight training for the type(s) of helicopter on which the flight crew member serves;

(c) Include proper flight crew coordination and training for all types of emergency and abnormal situations or procedures caused by engine, transmission, rotor, airframe or systems malfunctions, fire or other abnormalities;

(d) Include training in knowledge and skills related to the visual and instrument flight procedures for the intended area of operation, human performance and threat and error management, the transport of dangerous goods and, where applicable, procedures specific to the environment in which the helicopter is to be operated;

(e) Ensure that all flight crew members know the functions for which they are responsible and the relation of these functions to the functions of other crew members, particularly in regard to abnormal or emergency procedures;
(f) if applicable, include training in knowledge and skills related to the operational use of head-up display and/or enhanced vision systems for those helicopters so equipped, and

(g) Be given training on a recurrent basis acceptable to the CAAT. The recurrent training shall include an examination to assess competence.

7.3.2 The requirement for recurrent flight training in a particular type of helicopter shall be considered fulfilled by:

(a) The use, to the extent deemed feasible by the CAAT, of flight simulation training devices approved by CAAT for that purpose; or

(b) The completion within the appropriate period of the proficiency check required by 7.4.4 in that type of helicopter.

7.4 QUALIFICATIONS

7.4.1 Recent experience — pilot-in-command and co-pilot

7.4.1.1 An operator shall not assign a pilot-in-command or a co-pilot to operate at the flight controls of a type or variant of a type of a helicopter during take-off and landing unless that pilot has operated the flight controls during at least three take-offs and landings within the preceding 90 days on the same type of helicopter or in a flight simulator approved for the purpose.

7.4.1.2 When a pilot-in-command or a co-pilot is flying several variants of the same type of helicopter or different types of helicopter with similar characteristics in terms of operating procedures, systems and handling, the operator shall seek agreement with CAAT under which conditions the requirements of 7.4.1.1 for each variant or each type of helicopter can be combined.

7.4.2 Pilot-in-command operational qualification

7.4.2.1 An operator shall not utilize a pilot as pilot-in-command of a helicopter on an operation for which that pilot is not currently qualified until such pilot has complied with 7.4.2.2 and 7.4.2.3.

7.4.2.2 Each such pilot shall demonstrate to the operator an adequate knowledge of:

(a) The operation to be flown. This shall include knowledge of:

1) The terrain and minimum safe altitudes;

2) The seasonal meteorological conditions;

3) The meteorological, communication and air traffic facilities, services and procedures;

4) The search and rescue procedures; and
5) The navigation facilities and procedures associated with the route or area in which the flight is to take place; and

(b) Procedures applicable to flight paths over heavily populated areas and areas of high air traffic density, obstructions, physical layout, lighting, approach aids and arrival, departure, holding and instrument approach procedures, and applicable operating minima.

7.4.2.3 A pilot-in-command shall have made a flight, representative of the operation with which the pilot is to be engaged which must include a landing at a representative heliport, as a member of the flight crew and accompanied by a pilot who is qualified for the operation.

7.4.2.4 The operator shall maintain a record, sufficient to satisfy the CAAT of the qualification of the pilot and of the manner in which such qualification has been achieved.

7.4.2.5 An operator shall not continue to utilize a pilot as a pilot-in-command on an operation unless, within the preceding 12 months, the pilot has made at least one representative flight as a pilot member of the flight crew, or as a check pilot, or as an observer on the flight deck. In the event that more than 12 months elapse in which a pilot has not made such a representative flight, prior to again serving as a pilot-in-command on that operation, that pilot must requalify in accordance with 7.4.2.2. and 7.4.2.3.

7.4.2.6 An operator shall not assign a pilot to fly more than two types of helicopter.

7.4.2.7 An operator shall not assign a pilot to fly more than one type of helicopter in one period (single duty period).

7.4.3 Operator proficiency checks

7.4.3.1 An operator shall ensure that piloting technique and the ability to execute emergency procedures is checked in such a way as to demonstrate the pilot’s competence on each type or variant of a type of helicopter. Where the operation may be conducted under IFR, an operator shall ensure that the pilot’s competence to comply with such rules is demonstrated to either a check pilot of the operator or to a representative of the CAAT.

7.4.3.2 The validity period of the operator proficiency check shall be six calendar months. The validity periods shall be counted from the end of date when the check was taken. The proficiency check shall be undertaken before commencing commercial air transport operations.

7.4.3.3 When the check required above are undertaken within the last three months of the validity period, the new validity period shall be counted from the original expiry date. However, the interval of any two such checks shall be at least four months.

7.4.3.4 When the operator schedules flight crew on several variants of the same type of helicopter or different types of helicopters with similar characteristics in terms of operating procedures, systems and handling, the CAAT shall decide under which conditions the requirements of 7.4.3.1 for each variant or each type of helicopter can be combined.
7.5 FLIGHT CREW EQUIPMENT

A flight crew member assessed as fit to exercise the privileges of a licence, subject to the use of suitable correcting lenses, shall have a spare set of the correcting lenses readily available when exercising those privileges.

7.6 FLIGHT TIME, FLIGHT DUTY PERIODS AND REST PERIODS

The operator shall comply with the flight time, flight duty period, duty period and rest period limitations for flight crew members in accordance with the Announcement of Civil Aviation Authority of Thailand on Flight Time and Flight Duty Period Limitation requirements.
The operator shall demonstrate appropriate procedures concerning flight operations officer/flight dispatcher as follows:

8.1 A Flight operations officer/flight dispatcher, employed in conjunction with an approved method of control and supervision of flight operations shall be licensed in accordance with the provisions of the CAAT.

8.2 In accepting proof of qualifications other than the option of holding of a flight operations officer/flight dispatcher licence, such persons must have at least the equivalent of knowledge as flight operations officer/flight dispatcher, as defined in the regulations of the Civil Aviation Board, including: pilot license holders.

8.3 A flight operations officer/flight dispatcher shall not be assigned to duty unless that person has:

(a) Satisfactorily completed an operator-specific training course that addresses all the specific components of its approved method of control and supervision of flight operations specified in 2.2.1.3 and AOCR Appendix L.

(b) Made, within the preceding 12 months, at least a one-way qualification flight in a helicopter over any area for which that person is authorized to exercise flight supervision. The flight shall include landings at as many heliports as practicable. For the purpose of the qualification flight, the flight operations officer/flight dispatcher must be able to monitor the flight crew intercommunication system and radio communications and be able to observe the actions of the flight crew.

(c) Demonstrated to the operator a knowledge of:

1) The contents of the operations manual;

2) The radio equipment in the helicopters used; and

3) The navigation equipment in the helicopters used;

(d) Demonstrated to the operator a knowledge of the following details concerning operations for which the officer is responsible and areas in which that individual is authorized to exercise flight supervision:

1) The seasonal meteorological conditions and the sources of meteorological;

2) The effects of meteorological conditions on radio reception in the helicopters;

3) The peculiarities and limitations of each navigation system which is used by the operation; and
4) The helicopter loading instructions;

(e) Satisfied the operator as to knowledge and skills related to human performance as they apply to dispatch duties; and

(f) Demonstrated to the operator the ability to perform the duties specified in 2.6

A flight operations officer/flight dispatcher assigned to duty shall maintain complete familiarization with all features of the operations which are pertinent to such duties, including knowledge and skills related to human performance.
CHAPTER 9 MANUALS, LOGS AND RECORDS

9.1 FLIGHT MANUAL

The flight manual shall be updated by implementing changes made mandatory by the CAAT.

9.2 GENERAL MAINTENANCE MANUAL

The operator’s General Maintenance Manual provided in accordance with Chapter 6, Para 6.2, which may be issued in separate parts, shall contain the information in accordance with the Regulation of Civil Aviation Authority of Thailand on Operation of Aircraft-Commercial Air Transport, Section 5, Para 9(2) General Maintenance Manual.

9.3 MAINTENANCE PROGRAMME

9.3.1 A maintenance programme for each helicopter as required by Chapter 6, Para 6.3 shall contain the following information:

(a) Maintenance tasks and the intervals at which these are to be performed, taking into account the anticipated utilization of the helicopter;

(b) When applicable, a continuing structural integrity programme;

(c) Procedures for changing or deviating from (a) and (b) above; and

(d) When applicable, condition monitoring and reliability programme descriptions for helicopter systems, components, power transmissions, rotors and engines.

9.3.2 Maintenance tasks and intervals that have been specified as mandatory in approval of the type design shall be identified as such.

9.3.3 The maintenance programme shall be based on maintenance programme information made available by the State of Design or by the organization responsible for the type design, and any additional applicable experience.

9.4 JOURNEY LOG BOOK

9.4.1 The helicopter journey log book should contain the following item:

(a) Helicopter nationality and registration.

(b) Date.

(c) Names of crew members.

(d) Duty assignments of crew members.
(e) Place of departure

(f) Place of arrival.

(g) Time of departure.

(h) Time of arrival.

(i) Hours of flight.

(j) Nature of flight (private, scheduled or non-scheduled).

(k) Incidents, observations, if any.

(l) Signature of person in charge.

9.4.2 Entries in the journey log book should be made currently and in ink or indelible pen.

9.4.3 Completed journey log books should be retained to provide a continuous record of the last six months’ operations.

9.5 RECORDS OF EMERGENCY AND SURVIVAL EQUIPMENT CARRIED

Operators shall at all times have available for immediate communication to rescue coordination centres, lists containing information on the emergency and survival equipment carried on board any of their helicopters engaged in international air navigation. The information shall include, as applicable, the number, colour and type of life rafts and pyrotechnics, details of emergency medical supplies, water supplies and the type and frequencies of the emergency portable radio equipment.

9.6 FLIGHT RECORDER RECORDS

An operator shall ensure, to the extent possible, in the event the helicopter becomes involved in an accident or incident, the preservation of all related flight recorder records, and if necessary the associated flight recorders, and their retention in safe custody pending their disposition as determined by the Air Accident Investigation Regulations of Thailand.

9.7 FLIGHT DATA MONITORING (FDM) SYSTEM

(a) When conducting CAT operations with a helicopter equipped with a flight data recorder, the operator shall establish and maintain a FDM system, as part of its integrated management system, by 1 January 2019.

(b) The FDM system shall be non-punitive and contain adequate safeguards to protect the source(s) of the data.
9.8 AIRCRAFT TRACKING SYSTEM

An operator shall establish and maintain a monitored aircraft tracking system for offshore operations in a hostile environment from the time the helicopter departs until it arrives at its final destination.
CHAPTER 10 CABIN CREW

10.1 ASSIGNMENT OF EMERGENCY DUTIES

The operator shall establish, to the satisfaction of the CAAT, the minimum number of cabin crew required for each type of helicopter, based on seating capacity or the number of passengers carried, in order to effect a safe and expeditious evacuation of the helicopter, and the necessary functions to be performed in an emergency or a situation requiring emergency evacuation. The operator shall assign these functions for each type of helicopter.

10.1.1 In any case at least one cabin crew member shall be assigned for the operation of helicopters with a maximum operational passenger seating configuration (MOPSC) of more than 19 as identified in the operations manual when carrying one or more passenger(s).

10.1.2 Notwithstanding para 10.1.1 the Air Operator shall provide one cabin crew per 50 passengers and the number of cabin crew shall not less than the number of emergency doors.

10.1.3 In specific cases, the CAAT may specify the number of cabin crew on the helicopter to be more than the number specified in 10.1.2.

10.1.4 In unforeseen cases, the minimum number of cabin crew can be less than normal when the number of passengers is reduced by a method that is stated in the operations manual. In this case the operator shall report the event to the CAAT after the flight.

10.1.5 An operator shall ensure that all cabin crew on helicopter wear uniform, except in circumstances where the crew wear immersion suits.

10.2 PROTECTION OF CABIN CREW DURING FLIGHT

Each cabin crew member shall be seated with seat belt or, when provided, safety harness fastened during take-off and landing and whenever the pilot-in-command so directs.

10.3 TRAINING

An operator shall establish and maintain a training programme, approved by the CAAT, to be completed by all persons before being assigned as a cabin crew member. Cabin crew members shall complete a recurrent training programme annually. The training programmes are contained in AOCR Chapter 6.
CHAPTER 11 SECURITY

11.1 HELICOPTER SEARCH PROCEDURE CHECKLIST

The operator shall ensure that there is on board a checklist of the procedures to be followed in searching for a bomb in case of suspected sabotage. The checklist shall be supported by guidance on the course of action to be taken should a bomb or suspicious object be found.

11.2 TRAINING PROGRAMMES

11.2.1 An operator shall establish and maintain a training programme approved by the CAAT which enables crew members to act in the most appropriate manner to minimize the consequences of acts of unlawful interference.

11.2.2 An operator shall also establish and maintain a training programme to acquaint appropriate employees with preventive measures and techniques in relation to passengers, baggage, cargo, mail, equipment, stores and supplies intended for carriage on a helicopter so that they contribute to the prevention of acts of sabotage or other forms of unlawful interference.

11.3 REPORTING ACTS OF UNLAWFUL INTERFERENCE

An act of unlawful interference, the pilot-in-command shall submit, without delay, a report of such an act directly to the CAAT and to any other designated local authority.

11.4 SECURITY MANUAL

The operator shall provide a security manual in accordance with the Regulation of Civil Aviation Board No. 85, to its staff. The security manual shall be approved by the CAAT.
APPENDIX A : Inspection of Flight Records Systems

(1) Prior to the first flight of the day, the built-in test features for the flight recorders and flight data acquisition unit (FDAU), when installed, shall be monitored by manual and/or automatic checks.

(2) FDR systems or ADRS, CVR systems or CARS, and AIR systems or AIRS shall have recording system inspection intervals of one year; subject to the approval from the appropriate regulatory authority, this period may be extended to two years provided these systems have demonstrated a high integrity of serviceability and self-monitoring. DLR systems or DLRS shall have recording system inspection intervals of two years; subject to the approval from the appropriate regulatory authority, this period may be extended to four years provided these systems have demonstrated high integrity of serviceability and self-monitoring.

(3) 3 Recording system inspections shall be carried out as follows:

 a) an analysis of the recorded data from the flight recorders shall ensure that the recorder operates correctly for the nominal duration of the recording;

 b) the analysis of the FDR or ADRS shall evaluate the quality of the recorded data to determine if the bit error rate (including those errors introduced by recorder, the acquisition unit, the source of the data on the helicopter and by the tools used to extract the data from the recorder) is within acceptable limits and to determine the nature and distribution of the errors;

 c) a complete flight recording from the FDR or ADRS shall be examined in engineering units to evaluate the validity of all recorded parameters. Particular attention shall be given to parameters from sensors dedicated to the FDR or ADRS. Parameters taken from the aircraft’s electrical bus system need not be checked if their serviceability can be detected by other aircraft systems;

 d) the readout facility shall have the necessary software to accurately convert the recorded values to engineering units and to determine the status of discrete signals;

 e) an examination of the recorded signal on the CVR or CARS shall be carried out by replay of the CVR or CARS recording. While installed in the aircraft, the CVR or CARS shall record test signals from each aircraft source and from relevant external sources to ensure that all required signals meet intelligibility standards;

 f) where practicable, during the examination, a sample of in-flight recordings of the CVR or CARS shall be examined for evidence that the intelligibility of the signal is acceptable; and

 g) an examination of the recorded images on the AIR or AIRS shall be carried out by replay of the AIR or AIRS recording. While installed in the aircraft, the AIR or AIRS shall record test images from each aircraft source and from relevant external sources to ensure that all required images meet recording quality standards.
(4) A flight recorder system shall be considered unserviceable if there is a significant period of poor quality data, unintelligible signals, or if one or more of the mandatory parameters is not recorded correctly.

(5) A report of the recording system inspection shall be made available on request to regulatory authorities for monitoring purposes.

(6) Calibration of the FDR system:

 a) for those parameters which have sensors dedicated only to the FDR and are not checked by other means, recalibration shall be carried out at least every five years or in accordance with the recommendations of the sensor manufacturer to determine any discrepancies in the engineering conversion routines for the mandatory parameters and to ensure that parameters are being recorded within the calibration tolerances; and

 b) when the parameters of altitude and airspeed are provided by sensors that are dedicated to the FDR system, there shall be a recalibration performed as recommended by the sensor manufacturer, or at least every two years.
APPENDIX B: Medical Supplies

The following provides information on typical contents of a first-aid kit for carriage aboard a helicopter:

- List of contents
- Antiseptic swabs (10/pack)
- Bandage: adhesive strips
- Bandage: gauze 7.5 cm × 4.5 m
- Bandage: triangular; safety pins
- Dressing: burn 10 cm × 10 cm
- Dressing: compress, sterile 7.5 cm × 12 cm
- Dressing: gauze, sterile 10.4 cm × 10.4 cm
- Tape: adhesive 2.5 cm (roll)
- Steri-strips (or equivalent adhesive strip)
- Hand cleanser or cleansing towelettes
- Pad with shield, or tape, for eye
- Scissors: 10 cm (if allowed by national regulations)
- Tape: Adhesive, surgical 1.2 cm × 4.6 m
- Tweezers: splinter
- Disposable gloves (multiple pairs)
- Thermometers (non-mercury)
- Mouth-to-mouth resuscitation mask with one-way valve
- First-aid manual, current edition
- Incident record form

The following suggested medications can be included in the first-aid kits where permitted by national regulations:

- Mild to moderate analgesic
- Antiemetic
- Nasal decongestant
- Antacid
- Antihistamine
Universal precaution kit

A universal precaution kit shall be carried on a helicopter that is required to operate with at least one cabin crew member. Such a kit may be used to clean up any potentially infectious body contents such as blood, urine, vomit and faeces and to protect the cabin crew who are assisting potentially infectious cases of suspected communicable disease.

Typical contents

— Dry powder that can convert small liquid spill into a sterile granulated gel
— Germicidal disinfectant for surface cleaning
— Skin wipes
— Face/eye mask (separate or combined)
— Gloves (disposable)
— Protective apron
— Large absorbent towel
— Pick-up scoop with scraper
— Bio-hazard disposal waste bag
— Instructions
APPENDIX C: Flight Crew Member Training Programme - Helicopter

(1) The operator shall outline, in its training programme, details of the initial and recurrent flight crew training, transition (conversion), re-qualification, upgrade, recency of experience, familiarization, difference and other specialized training, as applicable.

(2) The training programme may be based on those prepared by Aircraft Manufacturer or by Training Organisation approved or recognized by the CAAT.

(3) Training Manual

3.1 It is a statutory requirement in the Authority Announcement that a “training manual shall contain all such information and instructions as may be necessary to enable a person appointed by the operator to give or to supervise the training, experience, practice and periodical tests to perform his duties”.

3.2 Applicants for Air Operator Certificates are required to prepare a training manual and to submit a copy to the Authority, together with their application for approval. The manual will be regarded by the Authority as a primary indication of the standards of training and checking likely to be achieved. It should give formal expression to the operator's training policy and requirements, together with adequate guidance to instructors and examiners.

3.3 Each copy of a manual should normally bear a serial number, and a list of holders should be maintained by the person responsible for issuing amendments. Where this system is not used, an operator should have satisfactory alternative arrangements for controlling the issue and amendment of manuals. Each volume of a manual should be numbered and bear a title and list of contents giving a clear indication of its scope. The title of the person or department responsible for the issue of the manual should also be indicated. At the front of each volume there should be an amendment page to indicate amendment number, date of incorporation, signature or initials of persons amending, and page(s) or paragraph(s) affected. Amended pages should be dated. The numbering of pages, sections, paragraphs, etc. should be orderly and systematic so as to facilitate immediate identification of any part of the subject matter. The standard of printing, duplication, binding, section dividers, indexing of sections, etc. should be sufficient to enable the document to be read without difficulty and to ensure that it remains intact and legible during normal use.

3.4 All proposed amendment to the contents in a Training Manual must be presented to the Authority for approval before inclusion in the manual. The amendment of a manual in manuscript will not be acceptable. Changes or additions, however slight they may be, should normally be incorporated by the issue of a fresh or additional page on which the amendment material is clearly indicated.

3.5 Although the training manual is a part of the operations manual it should be a separate volume addressed primarily to training staff, each of whom should normally have a personal copy. The form that the manual takes will vary considerably according to the size and complexity of the operator's organisation and the aircraft he/she uses,
and its adequacy will be assessed solely on the basis of its suitability for the operator's particular needs and circumstances.

3.6 The following matters should be covered in the manual normally in the volume addressed to training staff:

3.6.1 Requirements in respect of the qualifications, training and experience of training staff;

3.6.2 A comprehensive statement of the duties and responsibilities of all training staff, which should include their names, the type of training and/or checking which they may conduct as an Appendix for timely amendment purposes, and the types of aircraft used by the operator;

3.6.3 Minimum standards of experience and of initial and periodical training to be met by all aircraft crew for each type of aircraft used by the operator;

3.6.4 Detailed syllabi and specimen record forms for all training and checking;

3.6.5 Arrangements for administering and recording the periodical tests of all aircraft crew;

3.6.6 Methods of simulating instrument flight conditions;

3.6.7 Methods of simulating engine failure;

3.6.8 Procedures for touch-and-go or stop-and-go landings, minimum runway lengths and handling techniques;

3.6.9 Limitations on training and checking in the course of flights for the purpose of public transport. Note particularly that the simulation of instrument flight conditions and of emergencies affecting the flight characteristics of the aircraft is prohibited in the course of flights for the public transport of passengers;

3.6.10 Instructions covering rechecking and retraining after unsatisfactory performance or periods off flying due to illness or other causes;

3.6.11 The use of flight simulators; and

3.6.13 The training of flight crew in the following areas:

 (a) proper flight crew coordination and training in all types of emergency and abnormal situations or procedures caused by engine, airframe or systems malfunctions, fire or other abnormalities;

 (b) avoidance of controlled flight into terrain and policy for the use of the ground proximity warning systems (GPWS); and
(c) knowledge and skills related to visual and instrument flight procedures for the intended area of operation, charting, human performance including threat and error management and in the transport of dangerous goods.

3.6.14 Operators, who wish to outsource initial, recurrent and conversion training, must ensure that the Authority approves the training courses. Approved training organisations or the equivalent that have State regulatory approval, may be accepted by the Authority to conduct training, however, courses still require the Authority approval. The qualification, training and approval of training and examining personnel utilised by an organisation, will normally be required to be approved by the Authority. The training provided and flight documentation used should reflect the operators’ flight safety documents system.

4) Training programme

4.1 Initial/Operator conversion training:

(a) The flight crew member shall complete the operator conversion training course before commencing unsupervised line flying:

(1) when changing to an aircraft for which a new type or class rating is required;

(2) when joining an operator.

(b) The operator conversion training course shall include training on the equipment installed on the aircraft as relevant to flight crew members’ roles.

4.1.1 Operator conversion training and checking:

(a) CRM training shall be integrated into the operator conversion training course.

(b) Once an operator conversion course has been commenced, the flight crew member shall not be assigned to flying duties on another type or class of aircraft until the course is completed or terminated.

(c) The amount of training required by the flight crew member for the operator’s conversion course shall be determined in accordance with the standards of qualification and experience specified in the operations manual, taking into account his/her previous training and experience.

(d) The flight crew member shall complete:

(1) the operator proficiency check and the emergency and safety equipment training and checking before commencing line flying under supervision (LIFUS); and
the line check upon completion of line flying under supervision.

4.1.2 Operator conversion training syllabus:

(a) General

(1) The operator conversion training should include, in the following order:
 (i) ground training and checking, including aircraft systems, and normal, abnormal and emergency procedures;
 (ii) emergency and safety equipment training and checking, (completed before any flight training in an aircraft commences);
 (iii) flight training and checking (aircraft and/or FSTD); and
 (iv) line flying under supervision and line check.

(2) When the flight crew member has not previously completed an operator’s conversion course, he/she should undergo general first-aid training and, if applicable, ditching procedures training using the equipment in water.

(3) Where the emergency drills require action by the non-handling pilot, the check should additionally cover knowledge of these drills.

(4) The operator’s conversion may be combined with a new type/class rating training.

(5) The operator should ensure that CRM training are integrated into all appropriate phases of the conversion training; and

(b) Ground training

(1) Ground training should comprise a properly organised programme of ground instruction supervised by training staff with adequate facilities, including any necessary audio, mechanical and visual aids. Self-study using appropriate electronic learning aids, computer-based training (CBT), etc., may be used with adequate supervision of the standards achieved.

(2) The course of ground instruction should incorporate formal tests on such matters as aircraft systems, performance and flight planning, where applicable.

(c) Emergency and safety equipment training and checking

(1) Emergency and safety equipment training should take place in conjunction with cabin/technical crew undergoing similar training with emphasis on
coordinated procedures and two-way communication between the flight crew compartment and the cabin.

(2) On the initial conversion course and on subsequent conversion courses as applicable, the following should be addressed:

(i) Instruction on first-aid in general (initial conversion course only); instruction on first-aid as relevant to the aircraft type of operation and crew complement, including those situations where no cabin crew is required to be carried (initial and subsequent).

(ii) Aero-medical topics, including hypoxia, hyperventilation contamination of the skin/eyes by aviation fuel or hydraulic or other fluids, hygiene and food poisoning; and malaria.

(iii) The effect of smoke in an enclosed area and actual use of all relevant equipment in a simulated smoke-filled environment.

(iv) Actual fire fighting, using equipment representative of that carried in the aircraft on an actual or simulated fire except that, with Halon extinguishers, an alternative extinguisher may be used.

(v) The operational procedures of security, rescue and emergency services.

(vi) Survival information appropriate to their areas of operation (e.g. polar, desert, jungle or sea) and training in the use of any survival equipment required to be carried.

(vii) A comprehensive drill to cover all ditching procedures where flotation equipment is carried. This should include practice of the actual donning and inflation of a life-jacket, together with a demonstration or audio-visual presentation of the inflation of life-rafts and/or slide-rafts and associated equipment. This practice should, on an initial conversion course, be conducted using the equipment in water, although previous certified training with another operator or the use of similar equipment will be accepted in lieu of further wet-drill training.

(viii) Instruction on the location of emergency and safety equipment, correct use of all appropriate drills, and procedures that could be required of flight crew in different emergency situations. Evacuation of the aircraft (or a representative training device) by use of a slide where fitted should be included when the operations manual procedure requires the early evacuation of flight crew to assist on the ground.
(d) **Flight training**

(1) Flight training should be conducted to familiarise the flight crew member thoroughly with all aspects of limitations and normal, abnormal and emergency procedures associated with the aircraft and should be carried out by suitably qualified class and type rating instructors and/or examiners. For specific operations, such as steep approaches or operations based on QFE, additional training should be carried out, based on any additional elements of training defined for the aircraft type.

(2) In planning flight training on aircraft with a flight crew of two or more, particular emphasis should be placed on the practice of Line-oriented flight training (LOFT) with emphasis on CRM, and the use of crew coordination procedures, including coping with incapacitation.

(3) Normally, the same training and practice in the flying of the aircraft should be given to co-pilots as well as commanders.

(4) Unless the type rating training programme has been carried out in an FSTD, the training should include at least three take-offs and landings in the aircraft.

(e) **Line flying under supervision (LIFUS)**

Line flying under supervision provides the opportunity for a flight crew member to carry into practice the procedures and techniques he/she has been made familiar with during the ground and flight training of an operator conversion course. This is accomplished under the supervision of a flight crew member specifically nominated and trained for the task. At the end of line flying under supervision the respective crew member should be able to perform a safe and efficient flight conducted within the tasks of his/her crew member station.

(1) Following completion of flight training and checking as part of the operator’s conversion course, each flight crew member should operate a minimum number of sectors and/or flight hours under the supervision of a flight crew member nominated by the operator.

(2) The minimum flight sectors/hours should be specified in the operations manual and should be determined by the following:

 (i) previous experience of the flight crew member;

 (ii) complexity of the aircraft; and

 (iii) the type and area of operation.
(f) **Passenger handling for operations** where no cabin crew is required

Other than general training on dealing with people, emphasis should be placed on the following:

1. advice on the recognition and management of passengers who appear or are intoxicated with alcohol, under the influence of drugs or aggressive;

2. methods used to motivate passengers and the crowd control necessary to expedite an aircraft evacuation; and

3. the importance of correct seat allocation with reference to aircraft mass and balance. Particular emphasis should also be given on the seating of special categories of passengers.

(g) **Discipline and responsibilities, for operations** where no cabin crew is required

Emphasis should be placed on discipline and an individual’s responsibilities in relation to:

1. his/her ongoing competence and fitness to operate as a crew member with special regard to flight and duty time limitation (FTL) requirements; and

2. security procedures.

(h) **Passenger briefing/safety demonstrations, for operations** where no cabin crew is required

Training should be given in the preparation of passengers for normal and emergency situations.

4.1.3 **Completion of an operator’s conversion course:**

(a) The operator conversion course is deemed to have started when the flight training has begun. The theoretical element of the course may be undertaken ahead of the practical element.

(b) Under certain circumstances the course may have started and reached a stage where, for unforeseen reasons, it is not possible to complete it without a delay. In these circumstances, the operator may allow the pilot to revert to the original type.

(c) Before the resumption of the operator conversion course, the operator should evaluate how much of the course needs to be repeated before continuing with the remainder of the course.
4.2 Differences training and familiarisation training

(a) Flight crew members shall complete differences or familiarisation training when changing equipment or procedures requiring additional knowledge on types or variants currently operated.

(b) The operations manual shall specify when such differences or familiarisation training is required.

General

(a) Differences training requires additional knowledge and training on the aircraft or an appropriate training device. It should be carried out:

(1) when introducing a significant change of equipment and/or procedures on types or variants currently operated; and

(2) when operating a variant of a helicopter currently operated.

(b) Familiarisation training requires only the acquisition of additional knowledge. It should be carried out when:

(1) operating another helicopter of the same type; or

(2) when introducing a significant change of equipment and/or procedures on types or variants currently operated.

4.3 Recurrent training and checking

(a) Each flight crew member shall complete annual recurrent flight and ground training relevant to the type or variant of aircraft on which he/she operates, including training on the location and use of all emergency and safety equipment carried.

(b) Each flight crew member shall be periodically checked to demonstrate competence in carrying out normal, abnormal and emergency procedures.

4.3.1 Recurrent training should comprise the following:

(1) Ground training

(i) The ground training programme should include:

(A) aircraft systems;

(B) operational procedures and requirements, including ground de-icing/anti-icing and pilot incapacitation; and

(C) accident/incident and occurrence review.
(ii) Knowledge of the ground training should be verified by a questionnaire or other suitable methods.

(iii) When the ground training is conducted within 3 calendar months prior to the expiry of the 12 calendar months period, the next ground and refresher training should be completed within 12 calendar months of the original expiry date of the previous training.

(2) Emergency and safety equipment training

(i) Emergency and safety equipment training may be combined with emergency and safety equipment checking and should be conducted in an aircraft or a suitable alternative training device.

(ii) Every year the emergency and safety equipment training programme should include the following:

 (A) actual donning of a life-jacket, where fitted;

 (B) actual donning of protective breathing equipment, where fitted;

 (C) actual handling of fire extinguishers of the type used;

 (D) instruction on the location and use of all emergency and safety equipment carried on the aircraft;

 (E) instruction on the location and use of all types of exits;

 (F) security procedures.

(iii) Every 3 years the programme of training should include the following:

 (A) actual operation of all types of exits;

 (B) demonstration of the method used to operate a slide where fitted;

 (C) actual fire-fighting using equipment representative of that carried in the aircraft on an actual or simulated fire except that, with Halon extinguishers, an alternative extinguisher may be used;

 (D) the effects of smoke in an enclosed area and actual use of all relevant equipment in a simulated smoke-filled environment;

 (E) actual handling of pyrotechnics, real or simulated, where applicable;

 (F) demonstration in the use of the life-rafts where fitted. In the case of helicopters involved in extended over water operations, demonstration and use of the life-rafts.
Helicopter water survival training

Where life-rafts are fitted for helicopter extended overwater operations (such as sea pilot transfer, offshore operations, regular, or scheduled, coast-to-coast overwater operations), a comprehensive wet drill to cover all ditching procedures should be practised by aircraft crew. This wet drill should include, as appropriate, practice of the actual donning and inflation of a life-jacket, together with a demonstration or audio-visual presentation of the inflation of life-rafts. Crews should board the same (or similar) life-rafts from the water whilst wearing a life-jacket. Training should include the use of all survival equipment carried on board life-rafts and any additional survival equipment carried separately on board the aircraft;

— consideration should be given to the provision of further specialist training such as underwater escape training. Where operations are predominately conducted offshore, operators should conduct 3-yearly helicopter underwater escape training at an appropriate facility; wet practice drill should always be given in initial training unless the crew member concerned has received similar training provided by another operator;

(G) particularly in the case where no cabin crew is required, first-aid, appropriate to the aircraft type, the kind of operation and crew complement.

(iv) The successful resolution of aircraft emergencies requires interaction between flight crew and cabin/technical crew and emphasis should be placed on the importance of effective coordination and two-way communication between all crew members in various emergency situations.

(v) Emergency and safety equipment training should include joint practice in aircraft evacuations so that all who are involved are aware of the duties other crew members should perform. When such practice is not possible, combined flight crew and cabin/technical crew training should include joint discussion of emergency scenarios.

(vi) Emergency and safety equipment training should, as far as practicable, take place in conjunction with cabin/technical crew undergoing similar training with emphasis on coordinated procedures and two-way communication between the flight crew compartment and the cabin.

(3) CRM should be integrated into all appropriate phases of recurrent training.

(4) Aircraft/FSTD training
(i) General

(A) The aircraft/FSTD training programme should be established in a way that all major failures of aircraft systems and associated procedures will have been covered in the preceding 3-year period.

(B) When engine-out manoeuvres are carried out in an aircraft, the engine failure should be simulated.

(C) Aircraft/FSTD training may be combined with the operator proficiency check.

(D) When the aircraft/FSTD training is conducted within 3 calendar months prior to the expiry of the 12 calendar months period, the next aircraft/FSTD training should be completed within 12 calendar months of the original expiry date of the previous training.

(ii) Helicopters

(A) Where a suitable FSTD is available, it should be used for the aircraft/FSTD training programme. If the operator is able to demonstrate, on the basis of a compliance and risk assessment, that using an aircraft for this training provides equivalent standards of training with safety levels similar to those achieved using an FSTD, the aircraft may be used for this training to the extent necessary.

(B) The recurrent training should include the following additional items, which should be completed in an FSTD:

- settling with power and vortex ring;

- loss of tail rotor effectiveness.

4.4 Pilot qualification to operate in either pilot’s seat

Flight crew members who may be assigned to operate in either pilot’s seat shall complete appropriate training and checking as specified in the operations manual.